23 research outputs found

    Predictive testing for Huntington disease over 24 years: Evolution of the profile of the participants and analysis of symptoms

    No full text
    Abstract Background Huntington disease (HD) is a devastating neurodegenerative autosomal dominant genetic condition. Predictive testing (PT) is available through a defined protocol for at‐risk individuals. We analyzed the over‐24‐years evolution of practices regarding PT for HD in a single center. Methods We gathered data from the files of all individuals seeking PT for HD in Lyon, France, from 1994 to 2017. Results 448 out of 567 participants had exploitable data. Age at consultation dichotomized over 24 years toward an eightfold increase in individuals aged >55 (2/94 vs. 30/183; 2% to 16%; p < .0001) and twice as many individuals aged 18–20 (3/94 vs. 12/183; 3%–7%; p < .05). Motives for testing remained stable. The rate of withdrawal doubled over 24 years (9/94 vs. 38/183; 9%–21%; p < .02). Independently of the time period, less withdrawal was observed for married, accompanied, at 50% risk, and symptomatic individuals, and in those able to explicit the motives for testing or taking the test to inform their children. We also assessed the consistency between the presence of subtle symptoms compatible with HD found before the test by the team's neurologist, and the positivity of the molecular test. The concordance was 100% (17/17) for associated motor and cognitive signs, 87% (27/31) for isolated motor signs, and 70% (7/10) for isolated cognitive signs. Furthermore, 91% (20/22) of individuals who requested testing because they thought they had symptoms, were indeed found carriers. Conclusion This over‐24 years study underlines an increasing withdrawal from protocol and a dichotomization of participants’ age. We also show a strong concordance between symptoms perceived by the neurologist or by the patient, and the subsequent positivity of the predictive molecular test

    Congenital hypomyelinating neuropathy due to the association of a truncating mutation in PMP22 with the classical HNPP deletion

    No full text
    International audienceCongenital hypomyelinating neuropathy appears early in life, resulting in a delay of motor and sensory development. Mutations involve genes such as myelin protein zero (MPZ), peripheral myelin protein 22 (PMP22), and early growth response 2 (EGR2). We present a patient with two compound mutations in PMP22: a point mutation causing a premature STOP codon in exon 3 was inherited from the mother on the first allele, and the "typical" PMP22 deletion in the 17p11.2-p12 region was inherited from the father on the other allele. A sural biopsy was performed at age four. The patient has been followed from 28 months to 21 years of age; he presented significant sensory disturbances, with a slight motor deficit. PMP22 mRNA quantitation showed a severe decrease of PMP22 protein. No myelin sheaths were observed in the biopsy; mesaxons failed to form. The absence of PMP22 provides new insights into the role of this protein

    Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds

    No full text
    International audienceBackground: At least 28 loci have been linked to autosomal dominant spinocerebellar ataxia (ADCA). Causative genes have been cloned for ten nucleotide repeat expansions (SCA1, 2, 3, 6, 7, 8, 10, 12, 17, and 31) and six genes with classical mutations (SCA5, 13, 14, 15/16, 27, adn 28). Recently, a large British pedigree linked to SCA11 has been reported to carry a mutation in the TTBK2-gene. In order to assess the prevalence and phenotypic spectrum of SCA11, we screened 148 index patients of predominantly German (n=69) and French (n=79) descents with ADCA tested negative for a panel of SCA mutations (SCA1, 2, 3, 6, 7, and 17), for mutations in TTBK2. Methods: In the German ADCA cohort the complete coding sequence of the TTBK2-gene was PCR-amplified and screened for mutations by high-resolution-melting (HRM) analysis. In the French cohort, exons known to carry mutations were directly sequenced. For both cohorts, the gene-dosage alterations were assessed using a customized multiplex ligation probe amplification (MLPA) assay. Results: In two of 148 ADCA families – one German and one French - we identified a potentially disease-causing SCA11 mutation. Interestingly, both carried an identical two basepair deletion (c.1306_1307delGA, p.D435fs448X in exon 12) leading to a premature stop codon. Gene dosage alterations were not detected in the TTBK2-gene. Clinically, our SCA11 patients had phenotypic characteristics as described before presenting with slowly progressive almost pure cerebellar ataxia with normal life expectancy. Conclusion: SCA11 presented as ADCA III according to Harding's classification and is a rare cause of spinocerebellar ataxia in Caucasians accounting for less than 1% of dominant ataxias in central Europe

    Type 1 FSHD with 6–10 Repeated Units: Factors Underlying Severity in Index Cases and Disease Penetrance in Their Relatives Attention

    Get PDF
    International audienceMolecular defects in type 1 facioscapulohumeral muscular dystrophy (FSHD) are caused by a heterozygous contraction of the D4Z4 repeat array from 1 to 10 repeat units (RUs) on 4q35. This study compared (1) the phenotype and severity of FSHD1 between patients carrying 6-8 vs. 9-10 RUs, (2) the amount of methylation in different D4Z4 regions between patients with FSHD1 with different clinical severity scores (CSS). This cross-sectional multicenter study was conducted to measure functional scales and for genetic analysis. Patients were classified into two categories according to RUs: Group 1, 6-8; Group 2, 9-10. Methylation analysis was performed in 27 patients. A total of 99 carriers of a contracted D4Z4 array were examined. No significant correlations between RUs and CSS (r = 0.04, p = 0.73) and any of the clinical outcome scales were observed between the two groups. Hypomethylation was significantly more pronounced in patients with high CSS (>3.5) than those with low CSS (<1.5) (in DR1 and 5P), indicating that the extent of hypomethylation might modulate disease severity. In Group 1, the disease severity is not strongly correlated with the allele size and is mostly correlated with the methylation of D4Z4 regions

    Analysis of the DYSF mutational spectrum in a large cohort of patients

    No full text
    International audienceDysferlinopathies belong to the heterogeneous group of autosomal recessive muscular dystrophies. Mutations in the gene encoding dysferlin (DYSF) lead to distinct phenotypes, mainly Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Here, we analysed the mutational data from the largest cohort described to date, a cohort of 134 patients, included based on clinical suspicion of primary dysferlinopathy and/or dysferlin protein deficiency identified on muscle biopsy samples. Data were compiled from 38 patients previously screened for mutations in our laboratory (Nguyen, et al., 2005; Nguyen, et al., 2007), and 96 supplementary patients screened for DYSF mutations using genomic DHPLC analysis, and subsequent sequencing of detected variants, in a routine diagnostic setting. In 89 (66%) out of 134 patients, molecular analysis identified two disease causing mutations, confirming the diagnosis of primary Dysferlinopathy on a genetic basis. Furthermore, one mutation was identified in 30 patients, without identification of a second deleterious allele. We are currently developing complementary analysis for patients in whom only one or no disease-causing allele could be identified using the genomic screening procedure. Altogether, 64 novel mutations have been identified in this cohort, which corresponds to approximately 25% of all DYSF mutations reported to date. The mutational spectrum of this cohort significantly shows a higher proportion of nonsense mutations, but a lower proportion of deleterious missense changes as compared to previous series. (c) 2008 Wiley-Liss, Inc

    Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5

    No full text
    IF 10.292International audienceThe hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia
    corecore