160 research outputs found

    Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses

    Get PDF
    Sleep loss and insufficient sleep are risk factors for cardiometabolic diseases, but data on how insufficient sleep contributes to these diseases are scarce. These questions were addressed using two approaches: an experimental, partial sleep restriction study (14 cases and 7 control subjects) with objective verification of sleep amount, and two independent epidemiological cohorts (altogether 2739 individuals) with questions of sleep insufficiency. In both approaches, blood transcriptome and serum metabolome were analysed. Sleep loss decreased the expression of genes encoding cholesterol transporters and increased expression in pathways involved in inflammatory responses in both paradigms. Metabolomic analyses revealed lower circulating large HDL in the population cohorts among subjects reporting insufficient sleep, while circulating LDL decreased in the experimental sleep restriction study. These findings suggest that prolonged sleep deprivation modifies inflammatory and cholesterol pathways at the level of gene expression and serum lipoproteins, inducing changes toward potentially higher risk for cardiometabolic diseases

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Clues to Neuro-Degeneration in Niemann-Pick Type C Disease from Global Gene Expression Profiling

    Get PDF
    BACKGROUND: Niemann-Pick Type C (NPC) disease is a neurodegenerative disease that is characterized by the accumulation of cholesterol and glycosphingolipids in the late endocytic pathway. The majority of NPC cases are due to mutations in the NPC1 gene. The precise function of this gene is not yet known. METHODOLOGY/PRINCIPAL FINDINGS: Using cDNA microarrays, we analyzed the genome-wide expression patterns of human fibroblasts homozygous for the I1061T NPC1 mutation that is characterized by a severe defect in the intracellular processing of low density lipoprotein-derived cholesterol. A distinct gene expression profile was identified in NPC fibroblasts from different individuals when compared with fibroblasts isolated from normal subjects. As expected, NPC1 mutant cells displayed an inappropriate homeostatic response to accumulated intracellular cholesterol. In addition, a number of striking parallels were observed between NPC disease and Alzheimer's disease. CONCLUSIONS/SIGNIFICANCE: Many genes involved in the trafficking and processing of amyloid precursor protein and the microtubule binding protein, tau, were more highly expressed. Numerous genes important for membrane traffic and the cellular regulation of calcium, metals and other ions were upregulated. Finally, NPC fibroblasts exhibited a gene expression profile indicative of oxidative stress. These changes are likely contributors to the pathophysiology of Niemann-Pick Type C disease

    Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road

    Get PDF
    The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling

    The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    Get PDF
    Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood.Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics.We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity

    Oxysterol Binding Protein-dependent Activation of Sphingomyelin Synthesis in the Golgi Apparatus Requires Phosphatidylinositol 4-Kinase IIα

    Get PDF
    The study identifies a sterol- and oxysterol binding protein (OSBP)-regulated phosphatidylinositol 4-kinase that regulates ceramide transport protein (CERT) activity and sphingomyelin (SM) synthesis. RNA interference silencing experiments identify PI4KIIα; as the mediator of Golgi recruitment of CERT, providing a potential mechanism for coordinating assembly of SM and cholesterol in the Golgi or more distal compartments

    NICE : A Computational solution to close the gap from colour perception to colour categorization

    Get PDF
    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms

    Viral nanomotors for packaging of dsDNA and dsRNA

    Get PDF
    While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications

    Perceptual quality of BRDF approximations: dataset and metrics

    Get PDF
    International audienceBidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L 2 —or weighted quadratic—distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments
    corecore