29 research outputs found

    A new class of fatty acid allene oxide formed by the DOX-P450 fusion proteins of human and plant pathogenic fungi, C. immitis and Z. tritic

    Get PDF
    Linoleate dioxygenase-cytochrome P450 (DOX-CYP) fusion enzymes are common in pathogenic fungi. The DOX domains form hydroperoxy metabolites of 18:2n-6, which can be transformed by the CYP domains to 1,2- or 1,4-diols, epoxy alcohols, or to allene oxides. We have characterized two novel allene oxide synthases (AOSs), namely, recombinant 8R-DOX-AOS of Coccidioides immitis (causing valley fever) and 8S-DOX-AOS of Zymoseptoria tritici (causing septoria tritici blotch of wheat). The 8R-DOX-AOS oxidized 18:2n-6 sequentially to 8R-hydroperoxy-9Z,12Z-octadecadienoic acid (8R-HPODE) and to an allene oxide, 8R(9)-epoxy-9,12Z-octadecadienoic acid, as judged from the accumulation of the α-ketol, 8S-hydroxy-9-oxo-12Z-octadecenoic acid. The 8S-DOX-AOS of Z. tritici transformed 18:2n-6 sequentially to 8S-HPODE and to an α-ketol, 8R-hydroxy-9-oxo-12Z-octadecenoic acid, likely formed by hydrolysis of 8S(9)-epoxy-9,12Z-octadecadienoic acid. The 8S-DOX-AOS oxidized [8R-2H]18:2n-6 to 8S-HPODE with retention of the 2H-label, suggesting suprafacial hydrogen abstraction and oxygenation in contrast to 8R-DOX-AOS. Both enzymes oxidized 18:1n-9 and 18:3n-3 to α-ketols, but the catalysis of the 8R- and 8S-AOS domains differed. 8R-DOX-AOS transformed 9R-HPODE to epoxy alcohols, but 8S-DOX-AOS converted 9S-HPODE to an α-ketol (9-hydroxy-10-oxo-12Z-octadecenoic acid) and epoxy alcohols in a ratio of ∼1:2. Whereas all fatty acid allene oxides described so far have a conjugated diene impinging on the epoxide, the allene oxides formed by 8-DOX-AOS are unconjugated

    A lipoxygenase with dual positional specificity is expressed in olives (Olea europaea L.) during ripening.

    No full text
    International audiencePlant lipoxygenases (LOXs) are a class of widespread dioxygenases catalysing the hydroperoxidation of polyunsaturated fatty acids. Although multiple isoforms of LOX have been detected in a wide range of plants, their physiological roles remain to be clarified. With the aim to clarify the occurrence of LOXs in olives and their contribution to the elaboration of the olive oil aroma, we cloned and characterized the first cDNA of the LOX isoform which is expressed during olive development. The open reading frame encodes a polypeptide of 864 amino acids. This olive LOX is a type-1 LOX which shows a high degree of identity at the peptide level towards hazelnut (77.3%), tobacco (76.3%) and almond (75.5%) LOXs. The recombinant enzyme shows a dual positional specificity, as it forms both 9- and 13-hydroperoxide of linoleic acid in a 2:1 ratio, and would be defined as 9/13-LOX. Although a LOX activity was detected throughout the olive development, the 9/13-LOX is mainly expressed at late developmental stages. Our data suggest that there are at least two Lox genes expressed in black olives, and that the 9/13-LOX is associated with the ripening and senescence processes. However, due to its dual positional specificity and its expression pattern, its contribution to the elaboration of the olive oil aroma might be considered

    Diversity of the manganese lipoxygenase gene family - A mini-review

    No full text
    Analyses of fungal genomes of escalate from biological and evolutionary investigations. The biochemical analyses of putative enzymes will inevitably lag behind and only a selection will be characterized. Plant-pathogenic fungi secrete manganese-lipoxygenases (MnLOX), which oxidize unsaturated fatty acids to hydroperoxides to support infection. Six MnLOX have been characterized so far including the 3D structures of these enzymes of the Rice blast and the Take-all fungi. The goal was to use this information to evaluate MnLOX-related gene transcripts to find informative specimens for further studies. Phylogenetic analysis, determinants of catalytic activities, and the C-terminal amino acid sequences divided 54 transcripts into three major subfamilies. The six MnLOX belonged to the same "prototype" subfamily with conserved residues in catalytic determinants and Cterminal sequences. The second subfamily retained the secretion mechanism, presumably necessary for uptake of Mn2+, but differed in catalytic determinants and by cysteine replacement of an invariant Leu residue for positioning ("clamping") of fatty acids. The third subfamily contrasted with alanine in the Gly/Ala switch for regiospecific oxidation and a minority contained unprecedented C-terminal sequences or lacked secretion signals. With these exceptions, biochemical analyses of transcripts of the three subfamilies appear to have reasonable prospects to find active enzymes

    Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens

    No full text
    Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOXAOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOXAOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression

    Linoleate diol synthase related enzymes of the human pathogens Histoplasma capsulatum and Blastomyces dermatitidis

    No full text
    Histoplasma capsulatum is an ascomyceteous fungus and a human lung pathogen, which is present in river valleys of the Americas and other continents. H. capsulatum and two related human pathogens, Blasmomyces dermatitidis and Paracoccidioides brasiliensis, belongs to the Ajellomycetaceae family. The genomes of all three species code for three homologous and tentative enzymes of the linoleate diol synthase (LDS) family of fusion enzymes with dioxygenase (DOX) and cytochrome P450 domains. One group aligned closely with 8R-DOX-5,8-LDS of Aspergilli, which oxidizes linoleic acid to 5S,8R-dihydroxylinoleic acid; this group was not further investigated. The second group aligned with 10R-DOX-epoxy alcohol synthase (EAS) of plant pathogens. Expression of this enzyme from B. dermatitidis revealed only 10R-DOX activities, i.e., oxidation of linoleic acid to 10R-hydroperoxy-8E,12Z-octadecadienoic acid. The third group aligned in a separate entity. Expression of these enzymes of H. capsulatum and B. dermatitidis revealed no DOX activities, but both enzymes transformed 13S-hydroperoxy-9Z,11E-octadecadienoic acid efficiently to 12(13S)epoxy-11-hydroperoxy-9Z-octadecenoic acid. Other 13-hydroperoxides of linoleic and α-linolenic acids were transformed with less efficiency and the 9-hydroperoxides of linoleic acid were not transformed. In conclusion, a novel EAS has been found in H. capsulatum and B. dermititidis with 13S-hydroperoxy-9Z,11E-octadecadienoic acid as the likely physiological substrate

    Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates

    No full text
    Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of four additional MnLOX have provided information on the metal centre, substrate binding, oxygenation, tentative O-2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labelled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat

    Chiral phase-HPLC separation of hydroperoxyoctadecenoic acids and their biosynthesis by fatty acid dioxygenases.

    No full text
    Fatty acid oxygenases are often characterized by steric analysis of their hydroxy or hydroperoxy metabolites. Chiral phase-HPLC (CP-HPLC) can be used to separate enantiomeric hydroperoxyoctadecenoic acids. This method is based on analysis of seven octadecenoic fatty acids with double bonds at positions 6Z to 13Z, which were oxidized to hydroperoxides by photooxidation. A stationary phase, Reprosil Chiral NR, was found to resolve these hydroperoxy fatty acids with 1-hydroperoxy-2-propene and with 3-hydroperoxy-1-propene elements so that the S hydroperoxy fatty acids consistently eluted before the R stereoisomers. The chiral selector has not been disclosed, but it is described as an aromatic chiral phase with π-donor and π-acceptor groups of Pirkle type. The MS(3) spectra of the hydroperoxides showed characteristic fragments, which were influenced by the distance between the hydroperoxy and the carboxyl groups and the relative position of the double bond. Octadecenoic fatty acids can be oxidized by fungal and bacterial dioxygenases to hydroperoxides with cis or trans double bond configuration. Steric analysis of the hydroperoxy metabolites can be performed by this method, and it can also be used for preparative purposes

    EU-Indonesia Relations: No Expectations-Capability Gap?

    No full text
    This chapter has as its starting point Christopher Hill’s postulate of an ‘expectations-capability gap’ in the EU’s bilateral relations with other polities (both nation states and regional entities). It is argued that no such gap exists in the EU-Indonesia asymmetrical bilateral relationship. This lack is not due to heightened capabilities but, rather, low expectations. The capacities employed are thus commensurate with the latter. The chapter seeks to explore the reasons for these low expectations and minimal capabilities by briefly exploring the colonial experience with a minor European power and, above all, by the negative traces of decolonisation in the immediate post-Revolution period (1949–1967). It then explores how two irritants during the New Order period (1967–1998), namely the situation in Indonesian occupied East Timor and the separatist conflict in Aceh, meant that EU-relations with the world’s largest Muslim nation were maintained at a low level. Moreover, the EU’s approach to Indonesia during this period was inscribed within wider EU-ASEAN inter-regional relations. Only since the fall of the Suharto regime — and the experience of Indonesia’s extraordinary on-going democratic transition of the last 14 years — has there been a strengthening of bilateral relations. These relations, however, remain essentially economic driven by Indonesia’s progressive rise to BRIC status
    corecore