129 research outputs found

    WASP-80b has a dayside within the T-dwarf range

    Get PDF
    AHMJT is a Swiss National Science Foundation (SNSF) fellow under grant number P300P2-147773. MG and EJ are Research Associates at the F.R.S-FNRS; LD received the support the support of the F.R.I.A. fund of the FNRS. DE, KH, and SU acknowledge the financial support of the SNSF in the frame of the National Centre for Competence in Research ‘PlanetS’. EH and IR acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grants AYA2012-39612-C03-01 and ESP2013-48391-C4-1-R.WASP-80b is a missing link in the study of exo-atmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterisation, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μ\mum Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, like brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimated. [abridged]Publisher PDFPeer reviewe

    Hubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri Bb

    Get PDF
    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri Bb with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40h. We achieve a precision of 115ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri Bb with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26h of continuous observation

    Hubble Space Telescope search for the transit of the Earth-mass exoplanet α Centauri B b

    Get PDF
    Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterization of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet α Centauri B b with the Hubble Space Telescope (HST). We observed α Centauri B twice in 2013 and 2014 for a total of 40 h. We achieve a precision of 115 ppm per 6-s exposure time in a highly saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of α Centauri B b with the orbital parameters published in the literature at 96.6 per cent confidence. We find in our data a single transit-like event that could be associated with another Earth-sized planet in the system, on a longer period orbit. Our programme demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 h of continuous observations

    Two massive rocky planets transiting a K-dwarf 6.5 parsecs away

    Get PDF
    Support for this work was provided by NASA. M.G. is grateful to NASA and SSC Director for having supported his searches for RV planets with Spitzer. M.G. and V.V.G. are Research Associates at the Belgian Scientific Research Fund (F.R.S.-FNRS). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia–Brussels Federation.HD 219134 is a K-dwarf star at a distance of 6.5 parsecs around which several low-mass planets were recently discovered1,2. The Spitzer Space Telescope detected a transit of the innermost of these planets, HD 219134 b, whose mass and radius (4.5 M⊕ and 1.6 R⊕ respectively) are consistent with a rocky composition1. Here, we report new high-precision time-series photometry of the star acquired with Spitzer revealing that the second innermost planet of the system, HD 219134c, is also transiting. A global analysis of the Spitzer transit light curves and the most up-to-date HARPS-N velocity data set yields mass and radius estimations of 4.74 ± 0.19 M⊕ and 1.602 ± 0.055 R⊕ for HD 219134 b, and of 4.36 ± 0.22 M⊕ and 1.511 ± 0.047 R⊕ for HD 219134 c. These values suggest rocky compositions for both planets. Thanks to the proximity and the small size of their host star (0.778 ± 0.005 R ⊙ )3, these two transiting exoplanets — the nearest to the Earth yet found — are well suited for a detailed characterization (for example, precision of a few per cent on mass and radius, and constraints on the atmospheric properties) that could give important constraints on the nature and formation mechanism of the ubiquitous short-period planets of a few Earth masses.PostprintPeer reviewe

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/22, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (<<25 pc) with masses ranging from a few Jupiter masses to Super Earths (∼\sim2 Earth radii, ∼\sim10 M⊕_{\oplus}) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    WASP-80b has a dayside within the T-dwarf range

    Get PDF
    WASP-80b is a missing link in the study of exoatmospheres. It falls between the warm Neptunes and the hot Jupiters and is amenable for characterization, thanks to its host star's properties. We observed the planet through transit and during occultation with Warm Spitzer. Combining our mid-infrared transits with optical time series, we find that the planet presents a transmission spectrum indistinguishable from a horizontal line. In emission, WASP-80b is the intrinsically faintest planet whose dayside flux has been detected in both the 3.6 and 4.5 μm Spitzer channels. The depths of the occultations reveal that WASP-80b is as bright and as red as a T4 dwarf, but that its temperature is cooler. If planets go through the equivalent of an L-T transition, our results would imply that this happens at cooler temperatures than for brown dwarfs. Placing WASP-80b's dayside into a colour-magnitude diagram, it falls exactly at the junction between a blackbody model and the T-dwarf sequence; we cannot discern which of those two interpretations is the more likely. WASP-80b's flux density is as low as GJ436b at 3.6 μm; the planet's dayside is also fainter, but bluer than HD189733Ab's nightside (in the [3.6] and [4.5]Spitzer bands). Flux measurements on other planets with similar equilibrium temperatures are required to establish whether irradiated gas giants, such as brown dwarfs, transition between two spectral classes. An eventual detection of methane absorption in transmission would also help lift that degeneracy. We obtained a second series of high-resolution spectra during transit, using HARPS. We reanalyse the Rossiter-McLaughlin effect. The data now favour an aligned orbital solution and a stellar rotation nearly three times slower than stellar line broadening implies. A contribution to stellar line broadening, maybe macroturbulence, is likely to have been underestimated for cool stars, whose rotations have therefore been systematically overestimate

    Planetary system LHS 1140 revisited with ESPRESSO and TESS

    Get PDF
    Context. LHS 1140 is an M dwarf known to host two transiting planets at orbital periods of 3.77 and 24.7 days. They were detected with HARPS and Spitzer. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star. All these properties place this system at the forefront of the habitable exoplanet exploration, and it therefore constitutes a relevant case for further astrobiological studies, including atmospheric observations. Aims. We further characterize this system by improving the physical and orbital properties of the known planets, search for additional planetary-mass components in the system, and explore the possibility of co-orbitals. Methods. We collected 113 new high-precision radial velocity observations with ESPRESSO over a 1.5-yr time span with an average photon-noise precision of 1.07 m s-1. We performed an extensive analysis of the HARPS and ESPRESSO datasets and also analyzed them together with the new TESS photometry. We analyzed the Bayesian evidence of several models with different numbers of planets and orbital configurations. Results. We significantly improve our knowledge of the properties of the known planets LHS 1140 b (Pb ∼ 24.7 days) and LHS 1140 c (Pc ∼ 3.77 days). We determine new masses with a precision of 6% for LHS 1140 b (6.48 ± 0.46 Mpdbl) and 9% for LHS 1140 c (mc = 1.78 ± 0.17 Mpdbl). This reduces the uncertainties relative to previously published values by half. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched and LHS 1140 c might be a true Earth twin. In both cases, the water content is compatible to a maximum fraction of 10-12% in mass, which is equivalent to a deep ocean layer of 779 ± 650 km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system (md = 4.8 ± 1.1Mpdbl) on a 78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 Mpdbl for periods shorter than 10 days and above 2 Mpdbl for periods up to one year. Finally, our co-orbital analysis discards co-orbital planets in the tadpole and horseshoe configurations of LHS 1140 b down to 1 Mpdbl with a 95% confidence level (twice better than with the previous HARPS dataset). Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity (alternatively explained by a high eccentricity) and photometric data (alternatively explained by systematics), however. Conclusions. The new precise measurements of the planet properties of the two transiting planets in LHS 1140 as well as the detection of the planet candidate LHS 1140 d make this system a key target for atmospheric studies of rocky worlds at different stellar irradiations.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    The SOPHIE search for northern extrasolar planets XIV. A temperate (Teq ~ 300 K) super-earth around the nearby star Gliese 411

    Get PDF
    Periodic radial velocity variations in the nearby M-dwarf star Gl 411 are reported, based on measurements with the SOPHIE spectrograph. Current data do not allow us to distinguish between a 12.95-day period and its one-day alias at 1.08 days, but favour the former slightly. The velocity variation has an amplitude of 1.6 m s−1, making this the lowest-amplitude signal detected with SOPHIE up to now. We have performed a detailed analysis of the significance of the signal and its origin, including extensive simulations with both uncorrelated and correlated noise, representing the signal induced by stellar activity. The signal is significantly detected, and the results from all tests point to its planetary origin. Additionally, the presence of an additional acceleration in the velocity time series is suggested by the current data. On the other hand, a previously reported signal with a period of 9.9 days, detected in HIRES velocities of this star, is not recovered in the SOPHIE data. An independent analysis of the HIRES dataset also fails to unveil the 9.9-day signal. If the 12.95-day period is the real one, the amplitude of the signal detected with SOPHIE implies the presence of a planet, called Gl 411 b, with a minimum mass of around three Earth masses, orbiting its star at a distance of 0.079 AU. The planet receives about 3.5 times the insolation received by Earth, which implies an equilibrium temperature between 256 and 350 K, and makes it too hot to be in the habitable zone. At a distance of only 2.5 pc, Gl 411 b, is the third closest low-mass planet detected to date. Its proximity to Earth will permit probing its atmosphere with a combination of high-contrast imaging and high-dispersion spectroscopy in the next decade

    Spitzer Observations of GJ 3470 b: A Very Low-density Neptune-size Planet Orbiting a Metal-rich M Dwarf

    Get PDF
    We present Spitzer/IRAC 4.5 μm transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M_* = 0.539^(+0.047)_(-0.043) M_☉ and a radius of R_* = 0.568^(+0.037)_(-0.031)R_☉. We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 ± 0.10 and an effective temperature of T_(eff) = 3600 ± 100 K. The revised stellar parameters yield a planetary radius R_p = 4.83_(-0.21)^(+0.22)R_⊕ that is 13% larger than the value previously reported in the literature. We find a planetary mass M_p = 13.9^(+1.5)_(-1.4)M_⊕ that translates to a very low planetary density, P_p= 0.72^(+0.13)_(-0.12) g cm^(–3), which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies
    • …
    corecore