83 research outputs found

    Micro-orthogonal Cutting of Metals

    Get PDF
    Collaboration avec l'EPFLHigh speed micromilling with single point or multi-edge cutting tools of diameters smaller than 300 m is finding increasing applications for the production of small very precise metallic parts. Because of the small value of the ratios cutting depth to cutting edge radius and cutting depth to characteristic microstructural dimensions, one may expect that the extensive technological data base available for conventional metal cutting, may not directly transfer to micromilling and that size effects will influence the cutting pressures in micromilling as compared to those in macromilling. To address this issue, we have developed a micro-orthogonal cutting test facility in which chip thickness can be controlled to within a few microns and cutting forces can be measured. Using this facility, we are conducting a rather fundamental investigation of micro cutting processes to identify possible size effects. Besides measuring specific cutting pressures, we also aim at identifying mechanisms of chip formation and how they are affected by microstructure, fracture damage accumulation and microtool geometry. We intend to contrast these observations with observations made in macro orthogonal cutting of the same materials as those tested in micro orthogonal cutting. This paper will describe the test facility and present preliminary results obtained during micro-orthogonal cutting experiments

    Micro-orthogonal Cutting of Metals

    Get PDF
    Collaboration avec l'EPFLHigh speed micromilling with single point or multi-edge cutting tools of diameters smaller than 300 m is finding increasing applications for the production of small very precise metallic parts. Because of the small value of the ratios cutting depth to cutting edge radius and cutting depth to characteristic microstructural dimensions, one may expect that the extensive technological data base available for conventional metal cutting, may not directly transfer to micromilling and that size effects will influence the cutting pressures in micromilling as compared to those in macromilling. To address this issue, we have developed a micro-orthogonal cutting test facility in which chip thickness can be controlled to within a few microns and cutting forces can be measured. Using this facility, we are conducting a rather fundamental investigation of micro cutting processes to identify possible size effects. Besides measuring specific cutting pressures, we also aim at identifying mechanisms of chip formation and how they are affected by microstructure, fracture damage accumulation and microtool geometry. We intend to contrast these observations with observations made in macro orthogonal cutting of the same materials as those tested in micro orthogonal cutting. This paper will describe the test facility and present preliminary results obtained during micro-orthogonal cutting experiments

    Relationship between Sponsorship and Failure Rate of Dental Implants: A Systematic Approach

    Get PDF
    BACKGROUND: The number of dental implant treatments increases annually. Dental implants are manufactured by competing companies. Systematic reviews and meta-analysis have shown a clear association between pharmaceutical industry funding of clinical trials and pro-industry results. So far, the impact of industry sponsorship on the outcomes and conclusions of dental implant clinical trials has never been explored. The aim of the present study was to examine financial sponsorship of dental implant trials, and to evaluate whether research funding sources may affect the annual failure rate. METHODS AND FINDINGS: A systematic approach was used to identify systematic reviews published between January 1993 and December 2008 that specifically deal with the length of survival of dental implants. Primary articles were extracted from these reviews. The failure rate of the dental implants included in the trials was calculated. Data on publication year, Impact Factor, prosthetic design, periodontal status reporting, number of dental implants included in the trials, methodological quality of the studies, presence of a statistical advisor, and financial sponsorship were extracted by two independent reviewers (kappa = 0.90; CI(95%) [0.77-1.00]). Univariate quasi-Poisson regression models and multivariate analysis were used to identify variables that were significantly associated with failure rates. Five systematic reviews were identified from which 41 analyzable trials were extracted. The mean annual failure rate estimate was 1.09%.(CI(95%) [0.84-1.42]). The funding source was not reported in 63% of the trials (26/41). Sixty-six percent of the trials were considered as having a risk of bias (27/41). Given study age, both industry associated (OR = 0.21; CI(95%) [0.12-0.38]) and unknown funding source trials (OR = 0.33; (CI(95%) [0.21-0.51]) had a lower annual failure rates compared with non-industry associated trials. A conflict of interest statement was disclosed in 2 trials. CONCLUSIONS: When controlling for other factors, the probability of annual failure for industry associated trials is significantly lower compared with non-industry associated trials. This bias may have significant implications on tooth extraction decision making, research on tooth preservation, and governmental health care policies

    Influence of Anodized Titanium Surfaces on the Behavior of Gingival Cells in Contact with: A Systematic Review of In Vitro Studies

    Get PDF
    Electrochemically anodized (EA) surfaces promise enhanced biological properties and may be a solution to ensure a seal between peri-implant soft tissues and dental transmucosal components. However, the interaction between the modified nano-structured surface and the gingival cells needs further investigation. The aim of this systematic review is to analyze the biological response of gingival cells to EA titanium surfaces in in vitro studies with a score-based reliability assessment. A protocol aimed at answering the following focused question was developed: “How does the surface integrity (e.g., topography and chemistry) of EA titanium influence gingival cell response in in vitro studies?”. A search in three computer databases was performed using keywords. A quality assessment of the studies selected was performed using the SciRAP method. A total of 14 articles were selected from the 216 eligible papers. The mean reporting and the mean methodologic quality SciRAP scores were 87.7 ± 7.7/100 and 77.8 ± 7.8/100, respectively. Within the limitation of this review based on in vitro studies, it can be safely speculated that EA surfaces with optimal chemical and morphological characteristics enhance gingival fibroblast response compared to conventional titanium surfaces. When EA is combined with functionalization, it also positively influences gingival epithelial cell behavior

    A participatory scenario method to explore the future of marine social‐ecological systems

    Get PDF
    Source at https://doi.org/10.1111/faf.12356.Anticipating future changes in marine social‐ecological systems (MSES) several decades into the future is essential in the context of accelerating global change. This is challenging in situations where actors do not share common understandings, practices, or visions about the future. We introduce a dedicated scenario method for the development of MSES scenarios in a participatory context. The objective is to allow different actors to jointly develop scenarios which contain their multiple visions of the future. The method starts from four perspectives: “fisheries management,” “ecosystem,” “ocean climate,” and “global context and governance” for which current status and recent trends are summarized. Contrasted scenarios about possible futures are elaborated for each of the four single perspectives before being integrated into multiple‐perspective scenarios. Selected scenarios are then developed into storylines. Focusing on individual perspectives until near the end allows actors with diverse cultures, interests and horizons to confront their own notions of the future. We illustrate the method with the exploration of the futures of the Barents Sea MSES by 2050. We emphasize the following lessons learned: first, many actors are not familiar with scenario building and attention must be paid to explaining the purpose, methodology, and benefits of scenarios exercises. Second, although the Barents Sea MSES is relatively well understood, uncertainties about its future are significant. Third, it is important to focus on unlikely events. Fourth, all perspectives should be treated equally. Fifth, as MSES are continuously changing, we can only be prepared for future changes if we collectively keep preparing

    Hybrid modeling of biological networks: mixing temporal and qualitative biological properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling a dynamical biological system is often a difficult task since the a <it>priori </it>unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).</p> <p>Results</p> <p>We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to get the set of parameters settings which are consistent with given specifications. Such a modeling approach is particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation of the respective impact of per and tim on the circadian cycle.</p> <p>Conclusions</p> <p>A new hybrid technique for an automatic formal analysis of biological systems is developed with a special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.</p

    Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide

    Get PDF
    The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk

    Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology

    Get PDF
    Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism

    Meta-analysis of CO2 conversion, energy efficiency, and other performance data of plasma-catalysis reactors with the open access PIONEER database

    Get PDF
    This paper brings the comparison of performances of CO2 conversion by plasma and plasma-assisted catalysis based on the data collected from literature in this field, organised in an open access online database. This tool is open to all users to carry out their own analyses, but also to contributors who wish to add their data to the database in order to improve the relevance of the comparisons made, and ultimately to improve the efficiency of CO2 conversion by plasma-catalysis. The creation of this database and database user interface is motivated by the fact that plasma-catalysis is a fast-growing field for all CO2 conversion processes, be it methanation, dry reforming of methane, methanolisation, or others. As a result of this rapid increase, there is a need for a set of standard procedures to rigorously compare performances of different systems. However, this is currently not possible because the fundamental mechanisms of plasma-catalysis are still too poorly understood to define these standard procedures. Fortunately however, the accumulated data within the CO2 plasma-catalysis community has become large enough to warrant so-called “big data” studies more familiar in the fields of medicine and the social sciences. To enable comparisons between multiple data sets and make future research more effective, this work proposes the first database on CO2 conversion performances by plasma-catalysis open to the whole community. This database has been initiated in the framework of a H2020 European project and is called the “PIONEER DataBase”. The database gathers a large amount of CO2 conversion performance data such as conversion rate, energy efficiency, and selectivity for numerous plasma sources coupled with or without a catalyst. Each data set is associated with metadata describing the gas mixture, the plasma source, the nature of the catalyst, and the form of coupling with the plasma. Beyond the database itself, a data extraction tool with direct visualisation features or advanced filtering functionalities has been developed and is available online to the public. The simple and fast visualisation of the state of the art puts new results into context, identifies literal gaps in data, and consequently points towards promising research routes. More advanced data extraction illustrates the impact that the database can have in the understanding of plasma-catalyst coupling. Lessons learned from the review of a large amount of literature during the setup of the database lead to best practice advice to increase comparability between future CO2 plasma-catalytic studies. Finally, the community is strongly encouraged to contribute to the database not only to increase the visibility of their data but also the relevance of the comparisons allowed by this tool

    Migration and labour markets in OECD countries: a panel cointegration approach.

    No full text
    International audienceThis article examines the interaction between immigration and the host labour market of 14 Organization for Economic Co-operation and Development (OECD) countries using nonstationary panel data methodology. We estimate a trivariate Vector Error Correction Model (VECM) and derive causality tests to simultaneously assess the long- and short-term macroeconomic impact of newcomers on wages and unemployment levels in the host country. The results suggest that an increase of migrants is likely to increase wages in the destination countries in the short run but to increase them in the long run. There is no evidence of adverse effects on unemployment due to immigration in short and long-term except for Anglo-Saxon countries in the short term. Our findings also show that immigration is conditioned by levels of unemployment and wages especially in Anglo-Saxon countries
    corecore