323 research outputs found
RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media
The code RETRASO (REactive TRAnsport of SOlutes) simulates reactive transport of dissolved and gaseous species in non-isothermal saturated or unsaturated problems. Possible chemical reactions include aqueous complexation (including redox reactions), sorption, precipitation-dissolution of minerals and gas dissolution. Various models for sorption of solutes on solids are available, from experimental relationships (linear KD, Freundlich and Langmuir isotherms) to cation exchange and surface complexation models (constant capacitance, diffuse layer and triple layer models). Precipitation-dissolution and aqueous complexation can be modelled in equilibrium or according to kinetic laws. For the numerical solution of the reactive transport equations it uses the Direct Substitution Approach. The use of the code is demonstrated by three examples. The first example models various sorption processes in a smectite barrier. The second example models a complex chemical system in a two dimensional cross-section. The last example models pyrite weathering in an unsaturated medium
Double structure THM analysis of a heating test in a fractured tuff incorporating intrinsic permeability variations
This paper presents thermo-hydro-mechanical (THM) analyses simulating the Drift Scale Test (DST) performed at Yucca Mountain. A double structure approach based on two superimposed domains is adopted. Intrinsic permeability changes with deformations imply full THM coupling. Temperatures and gas permeabilities were measured during 4 years and are used to validate the model. Measured gas permeability variations show patterns that are successfully explained by the model calculations. These gas permeability variations may be attributed to thermo-hydraulic effects, and also to mechanical effects. Different cases of intrinsic permeability variations have been considered in the model and their influence on the calculated temperatures, degree of saturations and gas permeabilities are presented. Volumetric deformation, in contraction or dilatancy, implies changes in the aperture of rock fractures that in turn lead to changes in intrinsic permeability. Dilatancy, caused by shear stresses, increases intrinsic permeability. Consideration of this factor contributes significantly to improve the agreement of calculated gas permeability with the measured values obtained during the DST experiment
A constitutive model for crushed salt
A constitutive model for crushed salt is presented in this paper. A creep constitutive model is developed¿rst and compared with test results. The constitutive model presented here concentrates on creepdeformation because saline media behave basically in a ductile and time-dependent way. An idealizedgeometry is used as a common framework to obtain stress–strain macroscopic laws based on twodeformation mechanisms: ¿uid-assisted diffusional transfer creep and dislocation creep. The model is ableto predict strain rates that compare well with results from laboratory tests under isotropic and oedometricconditions. Macroscopic laws are written using a non-linear viscous approach, which incorporates also aviscoplastic component, based on critical state theory. The viscoplastic term is intended for non-creepdeformation mechanisms such as grain reorganization and crushing
Vapour transport in low permeability unsaturated soils with capillary effects
A discussion of water phase change in unsaturated soils that develop capillary effects is first carried out in the paper. A distinction between the GR (geothermal reservoir) and the NUS (nonisothermal unsaturated soil) approaches is performed. Several aspects concerning advective and nonadvective fluxes of vapour are described secondly and some relationships concerning the case of mass motion in a closed system subjected to temperature gradients derived. Since the structure of unsaturated clays changes with moisture content, in order to correctly simulate the coupled phenomena induced by temperature gradients a model for intrinsic permeability as a function of humidity is required. A preliminary version of the model is presented and applied to interpret a laboratory test by means of a numerical simulation using CODE BRIGH
Mechanisms of gas transport in clay barriers
Los ensayos de flujo de gas sobre muestras saturadas e impermeables indican la formación de sendas preferenciales de circulación del gas. El artÃculo describe un procedimiento para integrar esas discontinuidades en una formulación general THM tal y como se desarrolla en el Programa de elementos finitos CODE_BRIGHT. Con esta técnica se ha reproducido el comportamiento observado en muestras ensayadas. Se consigue reproducir los máximos observados en la presión de inyección y en el flujo de descarga cuando se abre por primera vez un camino preferencial. El artÃculo discute también el papel de la heterogeneidad a pequeña escala en el flujo de gas. Se ha desarrollado un experimento computacional inspirado en la geometrÃa, materiales de barrera y condiciones de contorno del ensayo a gran escala GMT, desarrollado en el Laboratorio de Grimsel. Todos los elementos de la discretización incluyen discontinuidades embebidas. El análisis muestra que la pequeña variabilidad de propiedades de la barrera facilita el desarrollo de caminos preferenciales al flujo de gas
Triaxial tests on frozen ground: formulation and modelling
Artificial Ground Freezing (AGF) is a controllable process that can be used by engineers to stabilise temporarily the ground, provide structural support and/or exclude groundwater from an excavation until construction of the final lining provides permanent stability and water tightness. In this work, the process of ground freezing is studied using a constitutive model that encompasses frozen and unfrozen behaviour within a unified effective-stress- based framework and employs a combination of ice pressure, liquid water pressure and total stress as state variables. The parameters of the constitutive model are calibrated against experimental data obtained from samples retrieved during construction of Napoli underground, in which AGF was extensively used to excavate in granular soils and weak fractured rock below the ground water table.Postprint (published version
Artificial ground freezing of a volcanic ash: Laboratory tests and modelling
The use of artificial ground freezing (AGF) to form earth support systems has had applications worldwide. These cover a variety of construction problems, including the formation of frozen earth walls to support deep excavations, structural underpinning for foundation improvement and temporary control of ground water in construction processes. On one hand, the main advantage of AGF as a temporary support system in comparison to other support methods, such as those based on injections of chemical or cement grout into the soil, is the low impact on the surrounding environment as the refrigerating medium required to obtain AGF is circulated in pipes and exhausted in the atmosphere or re-circulated without contamination of the ground water. On the other hand, the available methods may vary significantly in their sustainability and complexity in terms of times and costs required for their installation and maintenance. The ability to predict the effects induced by AGF on granular materials is therefore crucial to assessing construction time and cost and to optimising the method. In this work, the thermo-hydro-mechanical processes induced by artificial freezing of a soil body are studied using a constitutive model that encompasses frozen and unfrozen behaviour within a unified effective-stress-based framework. It makes use of a combination of ice pressure, liquid water pressure and total stress as state variables. The model is validated and calibrated using the results of a series of laboratory tests on natural samples of a volcanic ash (Pozzolana) retrieved during construction of Napoli underground, where the technique of AGF was used extensively to stabilise temporarily the ground and control the ground water
THM-coupled finite element analysis of frozen soil: formulation and application
A fully coupled thermo-hydro-mechanical (THM) finite element (FE) formulation is presented that considers freezing and thawing in water-saturated soils. The formulation considers each thermal, hydraulic and mechanical process, and their various interactions, through fundamental physical laws and models. By employing a combination of ice pressure, liquid pressure and total stress as state variables, a new mechanical model has been developed that encompasses frozen and unfrozen behaviour within a unified effective-stress-based framework. Important frozen soil features such as temperature and porosity dependence of shear strength are captured inherently by the model. Potential applications to geotechnics include analysis of frost heave, foundation stability or mass movements in cold regions. The model's performance is demonstrated with reference to the in situ pipeline frost heave tests conducted by Slusarchuk et al. Detailed consideration is given to FE mesh design, the influence of hydraulic parameters, and the treatment of air/ground interface boundary conditions. The THM simulation is shown to reproduce, with fair accuracy, the observed pipeline heave and the porosity growth driven by water migration
Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media
Presents numerical aspects of the program CODE_BRIGHT, which is a simulator for COupled DEformation, BRIne, Gas and Heat transport problems. It solves the equations of mass and energy balance and stress equilibrium and, originally, it was developed for saline media. The governing equations also include a set of constitutive laws and equilibrium conditions. The main peculiarities of saline media are in the dissolution/precipitation phenomena, presence of brine inclusions in the solid salt and creep deformation of the solid matrix
- …