3,090 research outputs found

    Effectiveness of offloading interventions to heal foot ulcers in persons with diabetes: a systematic review

    Get PDF
    Background Offloading interventions are commonly used in clinical practice to heal foot ulcers. The aim of this updated systematic review is to investigate the effectiveness of offloading interventions to heal diabetic foot ulcers. Methods We updated our previous systematic review search of PubMed, EMBASE, and Cochrane databases to also include original studies published between July 29, 2014 and August 13, 2018 relating to four offloading intervention categories in populations with diabetic foot ulcers: (a) offloading devices, (b) footwear, (c) other offloading techniques, and (d) surgical offloading techniques. Outcomes included ulcer healing, plantar pressure, ambulatory activity, adherence, adverse events, patient‐reported measures, and cost‐effectiveness. Included controlled studies were assessed for methodological quality and had key data extracted into evidence and risk of bias tables. Included non‐controlled studies were summarised on a narrative basis. Results We identified 41 studies from our updated search for a total of 165 included studies. Six included studies were meta‐analyses, 26 randomised controlled trials (RCTs), 13 other controlled studies, and 120 non‐controlled studies. Five meta‐analyses and 12 RCTs provided high‐quality evidence for non‐removable knee‐high offloading devices being more effective than removable offloading devices and therapeutic footwear for healing plantar forefoot and midfoot ulcers. Total contact casts (TCCs) and non‐removable knee‐high walkers were shown to be equally effective. Moderate‐quality evidence exists for removable knee‐high and ankle‐high offloading devices being equally effective in healing, but knee‐high devices have a larger effect on reducing plantar pressure and ambulatory activity. Low‐quality evidence exists for the use of felted foam and surgical offloading to promote healing of plantar forefoot and midfoot ulcers. Very limited evidence exists for the efficacy of any offloading intervention for healing plantar heel ulcers, non‐plantar ulcers, and neuropathic ulcers with infection or ischemia. Conclusion Strong evidence supports the use of non‐removable knee‐high offloading devices (either TCC or non‐removable walker) as the first‐choice offloading intervention for healing plantar neuropathic forefoot and midfoot ulcers. Removable offloading devices, either knee‐high or ankle‐high, are preferred as second choice over other offloading interventions. The evidence bases to support any other offloading intervention is still weak and more high‐quality controlled studies are needed in these areas

    Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment

    Get PDF
    The 2019/20 Australian bushfires (or wildfires) burned the largest forested area in Australia's recorded history, with major socio‐economic and environmental consequences. Among the largest fires was the 280,000 ha Green Wattle Creek Fire which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, one of Australia's largest urban supply reservoirs delivering ~85 % of the water used in Greater Sydney. WaterNSW is the utility responsible for managing water quality in Lake Burragorang. Its postfire risk assessment, carried out in collaboration with researchers in Australia, the UK and USA, involved i) identifying pyrogenic contaminants in ash and soil; ii) quantifying ash loads and contaminant concentrations across the burned area; and iii) estimating the probability and quantity of soil, ash and associated contaminants entrainment for different rainfall scenarios. The work included refining the capabilities of the new WEPPcloud‐WATAR‐AU model (Water Erosion Prediction Project cloud‐Wildfire Ash Transport And Risk‐Australia) for predicting sediment, ash and contaminants transport, aided by outcomes from previous collaborative post‐fire research in the catchment. Approximately two weeks after the Green Wattle Creek Fire was contained, an extreme rainfall event (~276 mm in 72 h), caused extensive ash and sediment delivery into the reservoir. The risk assessment informed on‐ground monitoring and operational mitigation measures (deployment of debris‐catching booms and adjustment of the water supply system configuration), ensuring the continuity of safe water supply to Sydney. WEPPcloud‐WATAR‐AU outputs can prioritize recovery interventions for managing water quality risks by quantifying contaminants on the hillslopes, anticipating water contamination risk, and identifying areas with high susceptibility to ash and sediment transport. This collaborative interaction among scientists and water managers, aimed also at refining model capabilities and outputs to meet managers’ needs, exemplifies the successful outcomes that can be achieved at the interface of industry and science

    CLOUD POINT EXTRACTION/PRECONCENTRATION OF COPPER IONS EXPLOITING THE FORMATION OF COMPLEXES WITH DMIT [4,5-DIMERCAPTO-1,3-DITHYOL-2-THIONATE]

    Get PDF
    CLOUD POINT EXTRACTION/PRECONCENTRATION OF COPPER IONS EXPLOITING THE FORMATION OF COMPLEXES WITH DMIT [4,5-DIMERCAPTO-1,3-DITHYOL-2-THIONATE]. The present study proposes a method for cloud point preconcentration of copper ions at pH 2.0 based on complexes formed with [4,5-dimercapto-1,3-dithyol-2-thionate] and subsequent determination by flame atomic absorption spectrometry (FAAS). Under optimal analytical conditions, the method provided limits of detection of 0.84 and 0.45 mu g L-1, by preconcentrating 12.0 and 24.0 mL of sample, respectively. The method was applied for copper determination in water samples, synthetic saliva, guarana powder, tea samples and soft drinks and the accuracy was assessed by analyzing the certified reference materials Dogfish Liver (DOLT-4) and Lobster Hepatopancreas (TORT-2).3581600160

    Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair

    Get PDF
    We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species

    Chemical diplomacy in male tilapia: urinary signal increases sex hormone and decreases aggression

    Get PDF
    Androgens, namely 11-ketotestosterone (11KT), have a central role in male fish reproductive physiology and are thought to be involved in both aggression and social signalling. Aggressive encounters occur frequently in social species, and fights may cause energy depletion, injury and loss of social status. Signalling for social dominance and fighting ability in an agonistic context can minimize these costs. Here, we test the hypothesis of a 'chemical diplomacy' mechanism through urinary signals that avoids aggression and evokes an androgen response in receiver males of Mozambique tilapia (Oreochromis mossambicus). We show a decoupling between aggression and the androgen response; males fighting their mirror image experience an unresolved interaction and a severe drop in urinary 11KT. However, if concurrently exposed to dominant male urine, aggression drops but urinary 11KT levels remain high. Furthermore, 11KT increases in males exposed to dominant male urine in the absence of a visual stimulus. The use of a urinary signal to lower aggression may be an adaptive mechanism to resolve disputes and avoid the costs of fighting. As dominance is linked to nest building and mating with females, the 11KT response of subordinate males suggests chemical eavesdropping, possibly in preparation for parasitic fertilizations.info:eu-repo/semantics/publishedVersio

    Random Walks on Stochastic Temporal Networks

    Full text link
    In the study of dynamical processes on networks, there has been intense focus on network structure -- i.e., the arrangement of edges and their associated weights -- but the effects of the temporal patterns of edges remains poorly understood. In this chapter, we develop a mathematical framework for random walks on temporal networks using an approach that provides a compromise between abstract but unrealistic models and data-driven but non-mathematical approaches. To do this, we introduce a stochastic model for temporal networks in which we summarize the temporal and structural organization of a system using a matrix of waiting-time distributions. We show that random walks on stochastic temporal networks can be described exactly by an integro-differential master equation and derive an analytical expression for its asymptotic steady state. We also discuss how our work might be useful to help build centrality measures for temporal networks.Comment: Chapter in Temporal Networks (Petter Holme and Jari Saramaki editors). Springer. Berlin, Heidelberg 2013. The book chapter contains minor corrections and modifications. This chapter is based on arXiv:1112.3324, which contains additional calculations and numerical simulation

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel
    corecore