4,989 research outputs found
Quantum state reconstruction using binary data from on/off photodetection
The knowledge of the density matrix of a quantum state plays a fundamental
role in several fields ranging from quantum information processing to
experiments on foundations of quantum mechanics and quantum optics. Recently, a
method has been suggested and implemented in order to obtain the reconstruction
of the diagonal elements of the density matrix exploiting the information
achievable with realistic on/off detectors, e.g. silicon avalanche
photo-diodes, only able to discriminate the presence or the absence of light.
The purpose of this paper is to provide an overview of the theoretical and
experimental developments of the on/off method, including its extension to the
reconstruction of the whole density matrix.Comment: revised version, 11 pages, 6 figures, to appear as a review paper on
Adv. Science Let
Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars
CONTEXT. Exoplanet searches have demonstrated that giant planets are
preferentially found around metal-rich stars and that their fraction increases
with the stellar mass. AIMS. During the past six years, we have conducted a
radial velocity follow-up program of 166 giant stars, to detect substellar
companions, and characterizing their orbital properties. Using this
information, we aim to study the role of the stellar evolution in the orbital
parameters of the companions, and to unveil possible correlations between the
stellar properties and the occurrence rate of giant planets. METHODS. Using
FEROS and CHIRON spectra, we have computed precision radial velocities and we
have derived atmospheric and physical parameters for all of our targets.
Additionally, velocities computed from UCLES spectra are presented here. By
studying the periodic radial velocity signals, we have detected the presence of
several substellar companions. RESULTS. We present four new planetary systems
around the giant stars HIP8541, HIP74890, HIP84056 and HIP95124. Additionally,
we find that giant planets are more frequent around metal-rich stars, reaching
a peak in the detection of = 16.7% around stars with
[Fe/H] 0.35 dex. Similarly, we observe a positive correlation of the
planet occurrence rate with the stellar mass, between M 1.0 -2.1
M, with a maximum of = 13.0%, at M = 2.1
M. CONCLUSIONS. We conclude that giant planets are preferentially
formed around metal-rich stars. Also, we conclude that they are more
efficiently formed around more massive stars, in the mass range of M
1.0 - 2.1 M. These observational results confirm previous
findings for solar-type and post-MS hosting stars, and provide further support
to the core-accretion formation model.Comment: Accepted for publication in A&
Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids.
Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HACPGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HACPGPB) on metabolite levels was discussed
Trace Mineral Status of Beef Cattle Grazing Semiarid Rangelands of North Mexico
Trace mineral concentrations of soil, forage and serum of range cattle of the northeast Mexico state of Nuevo Leon were determined in both wet and dry seasons of 1992. For each season, collections were made at twenty-four ranches within eleven counties of three regions. A total of 220 soil, 680 forage and 220 blood samples were collected and analyzed. No differences (P\u3c0.05) between regions were obtained for Zinc (28.0 to 34.9 ppm) or Copper (4.4 to 5.4 ppm). Molybdenum concentrations were greater in the northern (2.1 ppm) than in the central (1.6 ppm) or southern (1.5 ppm) regions. Considering the critical levels in forages for Zinc (30 ppm) and Copper (10 ppm) reported by the National Research Council (1984), Zinc concentrations may be marginally deficient, whereas Copper concentrations were deficient in all three regions, in both seasons, and in grasses and woody species
Afterglow rebrightenings as a signature of a long-lasting central engine activity? The emblematic case of GRB 100814A
In the past few years the number of well-sampled optical to NIR light curves
of long Gamma-Ray Bursts (GRBs) has greatly increased particularly due to
simultaneous multi-band imagers such as GROND. Combining these densely sampled
ground-based data sets with the Swift UVOT and XRT space observations unveils a
much more complex afterglow evolution than what was predicted by the most
commonly invoked theoretical models. GRB 100814A represents a remarkable
example of these interesting well-sampled events, showing a prominent late-time
rebrightening in the optical to NIR bands and a complex spectral evolution.
This represents a unique laboratory to test the different afterglow emission
models. Here we study the nature of the complex afterglow emission of GRB
100814A in the framework of different theoretical models. Moreover, we compare
the late-time chromatic rebrightening with those observed in other well-sampled
long GRBs. We analysed the optical and NIR observations obtained with the
seven-channel Gamma-Ray burst Optical and Near-infrared Detector at the 2.2 m
MPG/ESO telescope together with the X-ray and UV data detected by the
instruments onboard the Swift observatory. The broad-band afterglow evolution,
achieved by constructing multi-instrument light curves and spectral energy
distributions, will be discussed in the framework of different theoretical
models. We find that the standard models that describe the broad-band afterglow
emission within the external shock scenario fail to describe the complex
evolution of GRB 100814A, and therefore more complex scenarios must be invoked.
[abridged]Comment: 11 pages, 7 figures, 2 tables; Astronomy & Astrophysics, in pres
THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS
Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or
ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS
We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≾ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_γ + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, Ṁ ≈ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors
- …