118 research outputs found
Information transmission in oscillatory neural activity
Periodic neural activity not locked to the stimulus or to motor responses is
usually ignored. Here, we present new tools for modeling and quantifying the
information transmission based on periodic neural activity that occurs with
quasi-random phase relative to the stimulus. We propose a model to reproduce
characteristic features of oscillatory spike trains, such as histograms of
inter-spike intervals and phase locking of spikes to an oscillatory influence.
The proposed model is based on an inhomogeneous Gamma process governed by a
density function that is a product of the usual stimulus-dependent rate and a
quasi-periodic function. Further, we present an analysis method generalizing
the direct method (Rieke et al, 1999; Brenner et al, 2000) to assess the
information content in such data. We demonstrate these tools on recordings from
relay cells in the lateral geniculate nucleus of the cat.Comment: 18 pages, 8 figures, to appear in Biological Cybernetic
Validation of Results from Knowledge Discovery: Mass Density as a Predictor of Breast Cancer
The purpose of our study is to identify and quantify the association between high breast mass density and breast malignancy using inductive logic programming (ILP) and conditional probabilities, and validate this association in an independent dataset. We ran our ILP algorithm on 62,219 mammographic abnormalities. We set the Aleph ILP system to generate 10,000 rules per malignant finding with a recall >5% and precision >25%. Aleph reported the best rule for each malignant finding. A total of 80 unique rules were learned. A radiologist reviewed all rules and identified potentially interesting rules. High breast mass density appeared in 24% of the learned rules. We confirmed each interesting rule by calculating the probability of malignancy given each mammographic descriptor. High mass density was the fifth highest ranked predictor. To validate the association between mass density and malignancy in an independent dataset, we collected data from 180 consecutive breast biopsies performed between 2005 and 2007. We created a logistic model with benign or malignant outcome as the dependent variable while controlling for potentially confounding factors. We calculated odds ratios based on dichomotized variables. In our logistic regression model, the independent predictors high breast mass density (OR 6.6, CI 2.5–17.6), irregular mass shape (OR 10.0, CI 3.4–29.5), spiculated mass margin (OR 20.4, CI 1.9–222.8), and subject age (β = 0.09, p < 0.0001) significantly predicted malignancy. Both ILP and conditional probabilities show that high breast mass density is an important adjunct predictor of malignancy, and this association is confirmed in an independent data set of prospectively collected mammographic findings
A comparative analysis of the Libyan national essential medicines list and the WHO model list of essential medicines
Aim and Objectives: To examine the concordance of the Libyan Pharmaceutical List of Essential Medicines (LPLEM) with the World Health Organization Model List of Essential Medicines 2009 (WMLEM 2009). Methods: The concordance between generic medicines listed in the WMLEM 2009 (standard reference list) and the LPLEM 2006 (comparator list) was evaluated. Results: The total number of Basic Essential Medicines (BEMs) listed on the WMLEM 2009 was 347. The total number of generic medicines listed on the LPLEM was 584. Although the LPLEM has more listed medicines, only 270 (77.6%) of BEMs from the WMLEM were listed as available. However, 25 of the 77 missing medicines were deemed to have appropriate alternatives. A total of 52 medicines from the WMLEM 2009 were therefore missing from the LPLEM. Discrepancies compared to the WMLEM 2009 were identified in 15 out of 29 therapeutic sections. The highest discrepancy rate from the WMLEM 2009 was in the anti-infective section (35 missing medicines). Missing BEMs were noted in many subclassifications of the anti-infective medicines section, but omissions were particularly prevalent in the antibacterial medicines subsection (11 missing medicines). Antituberculosis medications had the highest discrepancy rate for antibacterial BEMs with one-third of the single medicines recommended by the WHO in the WMLEM 2009 not listed on the LPLEM. Of the 314 additional medicines on the LPLEM, 18 were deemed to be irrational non-essential medicines. Conclusion: The LPLEM does not include several essential medicines recommended by the WHO in the WMLEM 2009. These discrepancies may have serious public health implications for management of some infectious diseases, particularly, tuberculosis and HIV
A Dynamic Landscape for Antibody Binding Modulates Antibody-Mediated Neutralization of West Nile Virus
Neutralizing antibodies are a significant component of the host's protective response against flavivirus infection. Neutralization of flaviviruses occurs when individual virions are engaged by antibodies with a stoichiometry that exceeds a required threshold. From this “multiple-hit” perspective, the neutralizing activity of antibodies is governed by the affinity with which it binds its epitope and the number of times this determinant is displayed on the surface of the virion. In this study, we investigated time-dependent changes in the fate of West Nile virus (WNV) decorated with antibody in solution. Experiments with the well-characterized neutralizing monoclonal antibody (MAb) E16 revealed a significant increase in neutralization activity over time that could not be explained by the kinetics of antibody binding, virion aggregation, or the action of complement. Additional kinetic experiments using the fusion-loop specific MAb E53, which has limited neutralizing activity because it recognizes a relatively inaccessible epitope on mature virions, identified a role of virus “breathing” in regulating neutralization activity. Remarkably, MAb E53 neutralized mature WNV in a time- and temperature-dependent manner. This phenomenon was confirmed in studies with a large panel of MAbs specific for epitopes in each domain of the WNV envelope protein, with sera from recipients of a live attenuated WNV vaccine, and in experiments with dengue virus. Given enough time, significant inhibition of infection was observed even for antibodies with very limited, or no neutralizing activity in standard neutralization assays. Together, our data suggests that the structural dynamics of flaviviruses impacts antibody-mediated neutralization via exposure of otherwise inaccessible epitopes, allowing for antibodies to dock on the virion with a stoichiometry sufficient for neutralization
A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species
Development of a Humanized Antibody with High Therapeutic Potential against Dengue Virus Type 2
Dengue virus (DENV) infection remains a serious health threat despite the availability of supportive care in modern medicine. Monoclonal antibodies (mAbs) of DENV would be powerful research tools for antiviral development, diagnosis and pathological investigations. Here we described generation and characterization of seventeen mAbs with high reactivity for E protein of DENV. Four of these mAbs showed high neutralizing activity against DENV-2 infection in mice. The monoclonal antibody mAb DB32-6 showed the strongest neutralizing activity against diverse DENV-2 and protected DENV-2-infected mice against mortality in therapeutic models. We identified neutralizing epitopes of DENV located at residues K310 and E311 of viral envelope protein domain III (E-DIII) through the combination of biological and molecular strategies. Comparing the strong neutralizing activity of mAbs targeting A-strand with mAbs targeting lateral ridge, we found that epitopes located in A-strand induced stronger neutralizing activity than those located on the lateral ridge. DB32-6 humanized version was successfully developed. Humanized DB32-6 variant retained neutralizing activity and prevented DENV infection. Understanding the epitope-based antibody-mediated neutralization is crucial to controlling dengue infection. Additionally, this study also introduces a novel humanized mAb as a candidate for therapy of dengue patients
High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation
Interrogation of the perturbed gut microbiota in gouty arthritis patients through in silico metabolic modeling
Recent studies have shown perturbed gut microbiota associated with gouty arthritis, a metabolic disease characterized by an imbalance between uric acid production and excretion. To mechanistically investigate altered microbiota metabolism associated with gout disease, 16S rRNA gene amplicon sequence data from stool samples of gout patients and healthy controls were computationally analyzed through bacterial community metabolic models. Patient-specific community models constructed with the metagenomics modeling pipeline, mgPipe, were used to perform k-means clustering of samples according to their metabolic capabilities. The clustering analysis generated statistically significant partitioning of samples into a Bacteroides-dominated, high gout cluster and a Faecalibacterium-elevated, low gout cluster. The high gout cluster was predicted to allow elevated synthesis of the amino acids D-alanine and L-alanine and byproducts of branched-chain amino acid catabolism, while the low gout cluster allowed higher production of butyrate, the sulfur-containing amino acids L-cysteine and L-methionine, and the L-cysteine catabolic product H2S. By expanding the capabilities of mgPipe to provide taxa-level resolution of metabolite exchange rates, acetate, D-lactate and succinate exchanged from Bacteroides to Faecalibacterium were predicted to enhance butyrate production in the low gout cluster. Model predictions suggested that sulfur-containing amino acid metabolism generally and H2S more specifically could be novel gout disease markers
Spatial and Temporal Dynamics of Hepatitis B Virus D Genotype in Europe and the Mediterranean Basin
Hepatitis B virus genotype D can be found in many parts of the world and is the most prevalent strain in south-eastern Europe, the Mediterranean Basin, the Middle East, and the Indian sub-continent. The epidemiological history of the D genotype and its subgenotypes is still obscure because of the scarcity of appropriate studies. We retrieved from public databases a total of 312 gene P sequences of HBV genotype D isolated in various countries throughout the world, and reconstructed the spatio-temporal evolutionary dynamics of the HBV-D epidemic using a Bayesian framework
- …