34 research outputs found

    Altered mitochondrial metabolism in the insulin-resistant heart.

    Get PDF
    Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.COST Action MitoEAGL

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Growth of Cu2ZnSnS4 (CZTS) thin films using short sulfurization periods

    No full text
    Olgar, Mehmet Ali/0000-0002-6359-8316;WOS: 000457544900001In this study CZTS thin films were grown by a two-stage process that involved sequential sputter deposition of metallic Cu, Zn, and Sn layers on Mo coated glass substrates followed by RTP annealing at 530 and 560 degrees C for various dwell times (1, 60, and 180 s). CZTS thin films obtained by reaction at different sulfurization temperatures and reaction times were characterized employing XRD, Raman spectroscopy, SEM, EDX, and photoluminescence. It was observed that it is possible to obtain Cu-poor and Zn-rich CZTS thin films with short dwell time of reactions. XRD pattern and Raman spectra of the films showed formation of kesterite CZTS structure and some secondary phases such as CuS, SnS, SnS2 . the full-width-at-half-maximum (FWHM) values extracted from the (112) diffraction peaks of the CZTS thin films showed that extension of the sulfurization time provides better crystalline quality except for the CZTS560-60 thin film. SEM surface microstructure of the films displayed non-uniform, dense, and polycrystalline structure. the optical band gap of the films as determined by photoluminescence was found to be about 1.36-1.38 eV

    Influence of pre-annealing Cu-Sn on the structural properties of CZTSe thin films grown by a two-stage process

    No full text
    Olgar, Mehmet Ali/0000-0002-6359-8316; Seyhan Surmegozluer, Ayse/0000-0001-8090-1404WOS: 000443569500033In this study CZTSe thin film were synthesized by a two-stage process that included sequential sputter deposition of Cu and Sn layers forming a Cu/Sn structure, pre-annealing the Cu/Sn structure at 200-380 degrees C for some of the samples, sputtering of additional Zn and Cu over the Cu/Sn structure, evaporation of a Se cap forming a Cu/Sn/Zn/Cu/Se precursor film, and exposing the precursor film to high temperature annealing treatment at 550 degrees C for 15 min to form the compound. the results of the characterization carried out on the compound layers revealed that the phase content, composition and microstructure of these layers changed noticeably depending on whether or not a pre-annealing step was utilized. Although XRD studies suggested presence of secondary phases, especially in the non-pre-annealed samples, the data was dominated by kesterite CZTSe phase reflections. Raman spectra of the films verified the formation of kesterite CZTSe structure and some other phases, which were determined to be SnSe2 and possibly ZnSe. SEM micrographs showed denser structure in the pre-annealed samples

    CZTS layers formed under sulfur-limited conditions at above atmospheric pressure

    No full text
    Olgar, Mehmet Ali/0000-0002-6359-8316;WOS: 000450320600016In this study CZTS thin films were grown by a two-stage process that involved sequential sputter deposition of metallic Cu, Zn, and Sn layers on Mo coated glass substrates followed by RTP annealing in a sulfur atmosphere at background gas pressures in the range of 1-2 atm. Sulfurization was carried out in a mini reaction volume that provided a relatively S-limited environment Reacted films were characterized using XRD, EDX, SEM, photoluminescence and Raman spectroscopy. It was found that, under the S-limited regime provided in these experiments the Cu-S secondary phase formation was most extreme in the sample grown at 1.5 aim, whereas films grown at lower and higher pressures showed much smaller degree of phase separation. Reaction at 2 atm yielded a compound film that was the closest to the initial precursor in terms of its composition. SEM micrographs showed rough morphology and polycrystalline structure that changed with the sulfurization pressure. the optical band gap of the films as determined by photoluminescence was found to be about 1.37 eV. These experiments demonstrated the importance of the sulfurization pressure as well as the size of the reactor internal volume in determining secondary phase formation in two-stage processed CZTS layers

    Cu(In,Ga)(Se,Te)(2) films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation

    No full text
    Olgar, Mehmet Ali/0000-0002-6359-8316;WOS: 000427524100006Cu(In,Ga)(Se,Te)(2) or CIGST films were grown over molybdenum coated stainless steel foil substrates using a two-stage technique. the process involved deposition of a Cu-In-Ga/Se-Te precursor stack over the Mo layer using electrodeposition for the metals and evaporation for the chalcogens. the stack was then annealed at 600 degrees C to initiate reaction between the constituent elements. the reacted films were characterized in terms of their structural, compositional, electrical and optical properties. Results were compared to films obtained using all-evaporated precursor stacks formed on glass substrates. It was observed that the compositional control and the morphological properties of the compound layers grown on the metal foil substrates employing electrodeposition and rapid thermal annealing were superior to the films obtained on glass substrates using evaporated precursors and slower temperature ramp rate during annealing. Glancing angle XRD measurements at the front and back surfaces of the layers showed that Ga distribution through the CIGT films was much more uniform than that through the CIGS layers. CIGST films, which contained both Se and Te had slightly Se-rich surface compared to their bulk

    Influence of pre-annealing Cu-Sn on the structural properties of CZTSe thin films grown by a two-stage process

    No full text
    In this study CZTSe thin film were synthesized by a two-stage process that included sequential sputter deposition of Cu and Sn layers forming a Cu/Sn structure, pre-annealing the Cu/Sn structure at 200–380 °C for some of the samples, sputtering of additional Zn and Cu over the Cu/Sn structure, evaporation of a Se cap forming a Cu/Sn/Zn/Cu/Se precursor film, and exposing the precursor film to high temperature annealing treatment at 550 °C for 15 min to form the compound. The results of the characterization carried out on the compound layers revealed that the phase content, composition and microstructure of these layers changed noticeably depending on whether or not a pre-annealing step was utilized. Although XRD studies suggested presence of secondary phases, especially in the non-pre-annealed samples, the data was dominated by kesterite CZTSe phase reflections. Raman spectra of the films verified the formation of kesterite CZTSe structure and some other phases, which were determined to be SnSe 2 and possibly ZnSe. SEM micrographs showed denser structure in the pre-annealed samples. © 2018 Elsevier Lt
    corecore