16 research outputs found

    Comparison of fluid types for resuscitation in acute hemorrhagic shock and evaluation of gastric luminal and transcutaneous PCO2 in Leghorn chickens

    Full text link
    The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxidemeasured in arterial blood (PaCO2), with a transcutaneous monitor (TcPCO2), with a gastric intraluminal monitor (GiPCO2), and by end tidal measurements (EtCO2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50%of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of PaCO2, TcPCO2, GiPCO2, andEtCO2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPCO2 did not differ significantly from PaCO2, but GiPCO2 and EtCO2 differed significantly fromPaCO2.After hemorrhagic shock, GiPCO2 and TcPCO2 differed significantly from PaCO2. The TcPCO2 or GiPCO2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment

    Second-harmonic generation tuning by stretching arrays of GaAs nanowires

    No full text
    We present a wearable device with III–V nanowires in a flexible polymer, which is used for active mechanical tuning of the second-harmonic generation intensity. An array of vertical GaAs nanowires was grown with metalorganic vapour-phase epitaxy, then embedded in polydimethylsiloxane and detached from the rigid substrate with mechanical peel off. Experimental results show a tunability of the second-harmonic generation intensity by a factor of two for 30% stretching which matches the simulations including the distribution of sizes. We studied the impact of different parameters on the band dispersion and tunability of the second-harmonic generation, such as the pitch, the length, and the diameter. We predict at least three orders of magnitude active mechanical tuning of the nonlinear signal intensity for nanowire arrays. The flexibility of the array together with the resonant wavelength engineering make such structures perspective platforms for future bendable or stretchable nanophotonic devices as light sources or sensors.ISSN:2040-3364ISSN:2040-337

    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool

    Get PDF
    Background: Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making. Methods: In this contribution we will show that the combination of the three label-free non-linear imaging modalities CARS (coherent anti-Stokes Raman-scattering), TPEF (two-photon excited autofluorescence) and SHG (second harmonic generation) yields information that can be translated into computational hematoxylin and eosin (HE) images by multivariate statistics. Thereby, a computational HE stain is generated resulting in pseudo-HE overview images that allow for identification of suspicious regions. The latter are analyzed further by Raman-spectroscopy retrieving the tissue’s molecular fingerprint. Results: The results suggest that the combination of non-linear multimodal imaging and Raman-spectroscopy possesses the potential as a precise and fast tool in routine histopathology. Conclusions: As the key advantage, both optical methods are non-invasive enabling for further pathological investigations of the same tissue section, e.g. a direct comparison with the current pathological gold-standard

    Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and tetralogy of fallot, and its functional evaluation in the Drosophila heart

    Get PDF
    The causal genetic underpinnings of congenital heart diseases, which are often complex and multigenic, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 (MYOM2) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar Moand of the sarcomere, and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 [herein referred to as Drosophila myomesin and myosin binding protein (dMnM)] may be an ortholog of MYOM2, as well as other myosin binding proteins . Its partial loss of function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc (MYH6/7) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart

    Evolution of E. coli in a mouse model of inflammatory bowel disease leads to a disease-specific bacterial genotype and trade-offs with clinical relevance

    No full text
    ABSTRACTInflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance. Here, we perform an in vivo evolution experiment of E. coli in a gnotobiotic mouse model of IBD, followed by multiomic analyses to identify disease-specific genetic and phenotypic changes in bacteria that evolved in an inflamed versus a non-inflamed control environment. Our results demonstrate distinct evolutionary changes in E. coli specific to inflammation, including a single nucleotide variant that independently reached high frequency in all inflamed mice. Using ex vivo fitness assays, we find that these changes are associated with a higher fitness in an inflamed environment compared to isolates derived from non-inflamed mice. Further, using large-scale phenotypic assays, we show that bacterial adaptation to inflammation results in clinically relevant phenotypes, which intriguingly include collateral sensitivity to antibiotics. Bacterial evolution in an inflamed gut yields specific genetic and phenotypic signatures. These results may serve as a basis for developing novel evolution-informed treatment approaches for patients with intestinal inflammation

    G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    No full text
    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration
    corecore