344 research outputs found

    Цифрова співпраця віртуальних проектних команд у трансдисциплінарному освітньому просторі

    Get PDF
    The authors substantiate the need for clear reglementation of standards and rules of virtual teams’ work; documentation of all collaboration processes, including the procedure and protocol for holding collective meetings and making collective decisions. Such reglementation is important to ensure the transfer and exchange of knowledge during remote work, especially when people work asynchronously due to different time zones and helps reduce the need for all other control’s tools of project participants.Автори обґрунтовують необхідність чіткого регламентації стандартів і правил роботи віртуальних команд; документація всіх процесів співпраці, включаючи порядок і протокол проведення колективних зборів та прийняття колективних рішень. Таке регулювання важливо для забезпечення передачі та обміну знаннями під час віддаленої роботи, особливо коли люди працюють асинхронно через різні часові пояси, і допомагає зменшити потребу в усіх інших інструментах контролю учасників проекту

    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity : Spatial patterns and environmental factors

    Get PDF
    Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of beta diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high alpha diversity generally also had high beta diversity, and turnover was the most important component of beta diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes.Peer reviewe

    Predictive capability of Cys112Arg single nucleotide polymorphisms of the apolipoprotein E gene in assessing the risk of immediate and early post-traumatic seizures

    Get PDF
    This study is aimed at investigating epileptic seizures, one of the consequences of traumatic brain injury (TBI). Immediate and early post-traumatic seizures, as well as late post-traumatic epileptic seizures or post-traumatic epilepsy, can have different pathogenetic bases. The following key risk factors associated with post-traumatic epilepsy are known: duration of unconsciousness, gunshot wounds, intracranial hemorrhage, diffuse axonal injury, prolonged (more than 3 days) post-traumatic amnesia, acute subdural hematoma with surgical evacuation, immediate and early post-traumatic epileptic seizures, fracture of the skull bones. The role of genetic factors in post-traumatic seizures is poorly understood due to the complexity and multiple causal mechanisms. This paper addresses the role of genetic factors in the occurrence and severity of epileptic events in patients with TBI. In particular, we investigated the role of the Cys112Arg single nucleotide polymorphism of the apolipoprotein E gene. Apolipoprotein E is known for its role in the transport and metabolism of lipids and, therefore, the development of cardiovascular diseases; it is also associated with Alzheimer's disease and has recently been studied in the context of association with epilepsy. The study shows an association between this polymorphism and the risk of immediate and early epileptic seizures in patients with severe TBI

    Priority areas for development of scientific research: domestic and foreign experience

    Get PDF
    The collective monograph describes the priority areas for development of scientific research: domestic and foreign experience. The general issues of economic theory and history, economics and business management, finance and tax policy, modern management, public management and administration, etc. are considered. The publication is intended for scholars, teachers, postgraduate students, and students, as well as a wide readership

    Business Risk in Changing Dynamics of Global Village 2

    Get PDF
    The monograph is prepared based on the presentations and discussions made at the II International Conference “BUSINESS RISK IN CHANGING DYNAMICS OF GLOBAL VILLAGE (BRCDGV 2019)”, November, 7th-08th, 2019, in Ternopil, Ukraine. The aim of this scientific international conference is to provide a platform for professional debate with the participation of experts from around the globe in order to identify & analyze risks and opportunities in today’s global business, and specifically in Ukraine. The conference will provide a framework for researchers, business elites and decision makers to uplift the business ties and minimise the risk for creating a better world and better Ukraine.The Conference is designed to call experts around the globe from different sectors of practices which are effected by globalization and watching changes in Europe as well as in Ukraine. It is an excellent platform for interactions and communication between academicians, corporate representatives, policy makers, representatives of organizations and community, as well as individuals being the part of this globalized world. The 1st edition of this conference was held at the University of Applied Sciences in Nysa, Poland (2017); the 2nd edition took place at Ternopil Ivan Puluj National Technical University, Ukraine (2019); the 3rd edition will be organized at Patna University, India (2020) in cooperation with Indo-European Education Foundation (IEEF, Poland) and its partner universities from Poland, India, Europe and other part of the world.Under modern conditions of globalization nowadays, economic activity is undergoing changes. Innovative technologies, new forms of business, dynamic changes taking place in the world today result in the emergence of the necessity to minimize risks in order to maximize benefits. The cooperation between experts from different fields with the aim to ensure sustainable growth – policymakers, scientists, universities representatives and business elites is essential nowadays. With the purpose to bring them together and discuss the main issues of todays’ global world this conference took place in Ternopil, Ukraine. As Ukraine is now passing through a dynamic period of changes, recommendations coming up from such discussions can be very beneficial for building stronger society and meet the risks globalization brings up. This monograph provides a useful review of economic, financial and policy issues in the context of globalization processes and has proven extremely popular with practitioners and industry advisors. This edition is given the continued high demand and interest for experts form different areas working on diminishing of business risks wishing to keep abreast of current thinking on this subject. According to many experts process of managing risks is currently one of the most relevant business technologies and at the same time it is a complex process which requires ground knowledge in the research field and practical experience. The popularity of business risks management is due to objective reasons such as dynamics of society, interconnections and interdependence between different players in the society, increasing role of human capital in the country’s sustainable developmen

    Influence of the Water Level in the Yenisei River on the Ecosystem of its Anabranch within the City of Krasnoyarsk

    Get PDF
    Расположенная в черте города Красноярска в 35 км ниже Красноярской ГЭС Абаканская протока р. Енисей является, с одной стороны, важным рекреационным водоемом, а с другой стороны, подвержена нескольким типам антропогенного воздействия (зарегулирование дамбой, поступление ливневых и теплых вод, наличие садкового рыбоводного хозяйства), ухудшающего ее рекреационные свойства из-за чрезмерного зарастания макрофитами и скоплений метафитона нитчатой водоросли рода Spirogyra, ухудшения органолептических и микробиологических показателей воды. Природные климатические факторы способны существенно модифицировать влияние антропогенных факторов, что представляет интерес в плане прогнозирования и принятия решений по ликвидации негативных явлений. Целью работы является оценка влияния режима уровня воды р. Енисей в весенне-летний период на экосистему протоки через сравнение данных в многоводный (2021) и средневодный (2020) годы. Гидрофизические, гидрохимические и гидробиологические измерения проводили с мая по август 2020 и 2021 гг. сверху вниз на станциях левобережья: 1 – выше дамбы (фон), 2 – ниже дамбы, 3 – напротив выпуска теплых вод ТЭЦ, 4 – пляж, ниже рыбоводных садков. В 2021 г. вода в протоку поступала только снизу (к ст. 4 и 3), так как водопропускные трубы в теле плотины были засыпаны. В 2021 г., по сравнению с 2020 г., на зарегулированном участке протоки значительно увеличились численность и биомасса фито- и зоопланктона, возросла первичная продукция планктона, а аналогичные показатели фитоперифитона и зообентоса, напротив, снизились по причине их формирования на свежезалитых грунтах. Метафитон отсутствовал, но в августе спирогира стала доминировать в биомассе фитоперифитона. Концентрации нитрит-иона в воде увеличились в зарегулированной части протоки, а нитрат-иона и общего фосфора – на всех станциях протоки, в том числе и на фоновой, получающей воды из Красноярского водохранилища. Наблюдаемая в 2021 г. «вспышка трофии» в планктоне ст. 3 и 4 обусловлена длительным (полтора месяца) удержанием высокого уровня воды в протоке, позволившим использовать биоте вымываемые из затопленных берегов органические вещества и биогены, и аналогична таковой в экотонных зонах выклинивания подпора водохранилищ. Ежегодное увеличение концентраций минеральных форм азота и общего фосфора на нижних станциях, по сравнению с другими станциями, вероятно, обусловлено эвтрофирующим влиянием садкового рыбоводного хозяйстваLocated within the city of Krasnoyarsk, 35 km downstream of the Krasnoyarsk Hydropower Plant, the Abakanskaya anabranch of the Yenisei River, on the one hand, is an important recreational water body and, on the other hand, is subject to several types of anthropogenic impact (regulation by a dam, inflow of storm and warm waters, fish farming). These impacts worsen its recreational properties due to excessive growth of macrophytes and metaphytic filamentous algae of the genus Spirogyra, causing deterioration of organoleptic and microbiological parameters of water. Natural climatic factors can significantly modify the influence of anthropogenic factors, which is of interest in terms of forecasting and decision-making about the elimination of negative factors. The aim of the present work is to assess the influence of the water level regime of the Yenisei River in the spring–summer period on the anabranch ecosystem by comparing the data for the high-water (2021) and medium-water (2020) years. Hydrophysical, hydrochemical, and hydrobiological measurements were carried out from May to August 2020 and 2021 at locations on the left bank: 1 – upstream of the dam (reference), 2 – downstream of the dam, 3 – opposite the outlet of warm water, 4 – at the beach, downstream of the fish farm. In 2021, water entered the anabranch only from downstream (to locations 4 and 3), since the culverts in the dam body were filled up. In 2021, compared to 2020, the abundance and biomass of phyto- and zooplankton in the regulated section of the anabranch significantly increased, the primary production of plankton increased, but the corresponding parameters of phytoperiphyton and zoobenthos, on the contrary, decreased due to their formation on freshly flooded soils. Metaphyton was absent, but in August, Spirogyra began to dominate in the phytoperiphyton biomass. Nitrite ion concentrations in the water increased in the regulated part of the anabranch, and the nitrate ion and total phosphorus concentrations increased at all locations, including the reference location, receiving water from the Krasnoyarsk Reservoir. The plankton “abundance outbreak” observed in 2021 at locations 3 and 4 was caused by the water level in the anabranch remaining high over a long period (one and a half months), which made it possible for the biota to use organic matter and nutrients washed out from the flooded banks; the outbreak was similar to those occurring in the ecotone zones of inputs to the upper parts of reservoirs. The annual increase in the concentrations of mineral forms of nitrogen and total phosphorus at the lower locations compared with other locations was probably due to the eutrophic influence of fish farmin

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2
    corecore