1,373 research outputs found
A simplified general circulation model for a baroclinic ocean with topography. Part I: Theory, waves and wind-driven circulations
A new type of ocean circulation model is described and tested for various simplewind-driven circulation problems. The model resides on the vorticity balance ofthe depth averaged velocity and a hierarchy of balance equations for thevertical moments of baroclinic velocity and density, the lowest density momentbeing the baroclinic potential energy. The latter is the most importantdynamical link between the barotropic and the baroclinic motion in the presenceof a sloping topography. We derive a coupled hierarchy of tendency equations forthe potential energy and higher order density moments which, together withmoments for the baroclinic velocities and an appropriate truncation and thebarotropic vorticity balance yields in a simplified set of vertical integratedequations describing the BARotropic-Baroclinic-Interaction (BARBI) of motions inthe ocean. Using a numerical implementation of BARBI, idealized companionexperiments with a full primitive equation model (MOM) show that wavepropagation properties and baroclinic adjustments are correctly represented inBARBI in mid latitudes as well as in equatorial latitudes. Furthermore, a set ofexperiments with a realistic application to the Atlantic/Southern Ocean systemreadily reveals important aspects which have been previously reported by studiesof gyre circulations and circumpolar currents using full primitive equationmodels
The dynamical balance, transport and circulation of the Antarctic Circumpolar Current
The physical ingredients of the ACC circulation are reviewed. A picture of thecirculation is sketched by means of recent observations of the WOCE decade. Wepresent and discuss the role of forcing functions (wind stress, surfacebuoyancy flux) in the balance of the (quasi)-zonal flow, the meridionalcirculation and their relation to the ACC transport. Emphasis will be on theinterrelation of the zonal momentum balance and the meridional circulation, theimportance of diapycnal mixing and eddy processes. Finally, new model conceptsare described: a model of the ACC transport dependence on wind stress andbuoyancy flux, based on linear wave theory; and a model of the meridionaloverturning of the Southern Ocean, based on zonally averaged dynamics with eddyparameterization
The <i>Ophiocoma</i> species (Ophiurida: Ophiocomidae) of South Africa
This study raises the number of Ophiocoma species recorded in South African from four to eight. All species are briefly discussed in terms of taxonomy, geographic distribution and ecology. In addition, the juvenile of O. brevipes, found on the underside of adult Ophiocoma brevipes specimens, is described in detail. A neotype is designated for O. scolopendrina
Pruebas de eficacia y resultados de campo con vacunas inactivadas contra la enfermedad de Newcastle y el síndrome caída de puesta 76
Neutrality versus materiality: a thermodynamic theory of neutral surfaces
In this paper, a theory for constructing quasi-neutral density variables directly in thermodynamic space is formulated, which is based on minimising the absolute value of a purely thermodynamic quantity .
Physically, has a dual dynamic/thermodynamic interpretation as the quantity controlling the energy
cost of adiabatic and isohaline parcel exchanges on material surfaces, as well as the dependence of in-situ density on spiciness, in a description of water masses based on , spiciness and pressure. Mathematically, minimising in thermodynamic space is showed to be equivalent to maximising neutrality in physical space. The physics of epineutral dispersion is also reviewed and discussed. It is argued, in particular, that epineutral dispersion is best understood as the aggregate effect of many individual non-neutral stirring events, so that it is only the net displacement aggregated over many events that is approximately neutral. This new view resolves an apparent paradox between the focus in neutral density theory on zero-buoyancy motions and the overwhelming evidence that lateral dispersion in the ocean is primarily caused by non-zero buoyancy processes such as tides, residual currents and sheared internal waves. The efficiency by which a physical process contributes to lateral dispersion can be characterised by its energy signature, with those processes releasing available potential energy (negative energy cost) being more efficient than purely neutral processes with zero energy cost. Although the latter mechanism occurs in the wedge of instability, its source of energy is not baroclinicity but the coupling between thermobaricity and density-compensated temperature/salinity anomalies. Such a mechanism, which can only exist in a salty ocean, is speculated to be important for dissipating spiciness anomalies and neutral helicity. The paper also discusses potential conceptual difficulties with the use of neutral rotated diffusion tensors in numerical ocean models, as well as with the construction of neutral density variables in physical space. It also emphasises the irreducible character of thermobaric forces in the ocean. These are argued to be the cause for adiabatic thermobaric dianeutral
dispersion, and to forbid the existence of density surfaces along which fluid parcels can be exchanged without experiencing buoyancy forces, in contrast to what is assumed in the theory of neutral surfaces
A Hamiltonian Formulation for Long Internal Waves
A novel canonical Hamiltonian formalism is developed for long internal waves
in a rotating environment. This includes the effects of background vorticity
and shear on the waves. By restricting consideration to flows in hydrostatic
balance, superimposed on a horizontally uniform background of vertical shear
and vorticity, a particularly simple Hamiltonian structure arises, which can be
thought of as describing a nonlinearly coupled infinite collection of shallow
water systems. The kinetic equation describing the time evolution of the
spectral energy of internal waves is subsequently derived, and a stationary
Kolmogorov solution is found in the high frequency limit. This is surprisingly
close to the Garrett--Munk spectrum of oceanic internal waves
Jets and Topography: Jet Transitions and the Impact on Transport in the Antarctic Circumpolar Current
The Southern Ocean’s Antarctic Circumpolar Current (ACC) naturally lends itself to interpretations using a zonally averaged framework. Yet, navigation around steep and complicated bathymetric obstacles suggests that local dynamics may be far removed from those described by zonally symmetric models. In this study, both observational and numerical results indicate that zonal asymmetries, in the form of topography, impact global flow structure and transport properties.
The conclusions are based on a suite of more than 1.5 million virtual drifter trajectories advected using a satellite altimetry–derived surface velocity field spanning 17 years. The focus is on sites of “cross front” transport as defined by movement across selected sea surface height contours that correspond to jets along most of the ACC. Cross-front exchange is localized in the lee of bathymetric features with more than 75% of crossing events occurring in regions corresponding to only 20% of the ACC’s zonal extent.
These observations motivate a series of numerical experiments using a two-layer quasigeostrophic model with simple, zonally asymmetric topography, which often produces transitions in the front structure along the channel. Significantly, regimes occur where the equilibrated number of coherent jets is a function of longitude and transport barriers are not periodic. Jet reorganization is carried out by eddy flux divergences acting to both accelerate and decelerate the mean flow of the jets. Eddy kinetic energy is amplified downstream of topography due to increased baroclinicity related to topographic steering. The combination of high eddy kinetic energy and recirculation features enhances particle exchange. These results stress the complications in developing consistent circumpolar definitions of the ACC fronts
- …
