300 research outputs found

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Calcium phosphates and silicon: exploring methods of incorporation

    Get PDF
    Background: Bioinorganics have been explored as additives to ceramic bone graft substitutes with the aim to improve their performance in repair and regeneration of large bone defects. Silicon (Si), an essential trace element involved in the processes related to bone formation and remodeling, was shown not only to enhance osteoblasts proliferation but also to stimulate the differentiation of mesenchymal stem cells (MSCs) and preosteoblasts into the osteogenic lineage. In this study, the added value of Si to calcium phosphate (CaP) coatings was evaluated. Methods: Tissue culture plastic well plates were coated with a thin CaP layer to which traces amounts of Si were added, either by adsorption or by incorporation through coprecipitation. The physicochemical and structural properties of the coatings were characterized and the dissolution behavior was evaluated. The adsorption/incorporation of Si was successfully achieved and incorporated ions were released from the CaP coatings. Human MSCs were cultured on the coatings to examine the effects of Si on cell proliferation and osteogenic differentiation. For the statistical analysis, a one-way ANOVA with Bonferroni post-hoc test was performed. Results: The results showed that human MSCs (hMSCs) responded to the presence of Si in the CaP coatings, in a dosedependent manner. An increase in the expression of markers of osteogenic differentiation by human MSCs was observed as a result of the increase in Si concentration. Conclusions: The incorporation/adsorption of Si into CaP coatings was successfully achieved and hMSCs responded with an increase in osteogenic genes expression with the increase of Si concentration. Furthermore, hMSCs cultured on CaP-I coatings expressed higher levels of ALP and OP, indicating that this may be the preferred method of incorporation of bioinorganics into CaPsPortuguese Foundation for Science and Technology (FCT) for providing Ana I. Rodrigues her PhD scholarship (Grant No. SFRH/BD/69962/2010). This work was partially supported by national funds through the FCT under the scope of the project OSTEOSYNTHESIS project (PTDC/CTM-BIO/0814/2012) and by the European Regional Development Fund (FEDER) through the “COMPETE” - Operational Programme for Competitiveness factors (FCOMP-01-0124-FEDER-028491).info:eu-repo/semantics/publishedVersio

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: One typical feature in chronic obstructive pulmonary disease (COPD) is the disturbance of the oxidant/antioxidant balance. Glutaredoxins (Grx) are thiol disulfide oxido-reductases with antioxidant capacity and catalytic functions closely associated with glutathione, the major small molecular weight antioxidant of human lung. However, the role of Grxs in smoking related diseases is unclear. METHODS: Immunohistochemical and Western blot analyses were conducted with lung specimens (n = 45 and n = 32, respectively) and induced sputum (n = 50) of healthy non-smokers and smokers without COPD and at different stages of COPD. RESULTS: Grx1 was expressed mainly in alveolar macrophages. The percentage of Grx1 positive macrophages was significantly lower in GOLD stage IV COPD than in healthy smokers (p = 0.021) and the level of Grx1 in total lung homogenate decreased both in stage I–II (p = 0.045) and stage IV COPD (p = 0.022). The percentage of Grx1 positive macrophages correlated with the lung function parameters (FEV1, r = 0.45, p = 0.008; FEV1%, r = 0.46, p = 0.007, FEV/FVC%, r = 0.55, p = 0.001). Grx1 could also be detected in sputum supernatants, the levels being increased in the supernatants from acute exacerbations of COPD compared to non-smokers (p = 0.013) and smokers (p = 0.051). CONCLUSION: The present cross-sectional study showed that Grx1 was expressed mainly in alveolar macrophages, the levels being decreased in COPD patients. In addition, the results also demonstrated the presence of Grx1 in extracellular fluids including sputum supernatants. Overall, the present study suggests that Grx1 is a potential redox modulatory protein regulating the intracellular as well as extracellular homeostasis of glutathionylated proteins and GSH in human lung

    A Risk Score for Predicting Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) develops as a result of environmental influences on the genetically susceptible. Siblings of people with MS have an increased risk of both MS and demonstrating asymptomatic changes in keeping with MS. We set out to develop an MS risk score integrating both genetic and environmental risk factors. We used this score to identify siblings at extremes of MS risk and attempted to validate the score using brain MRI.78 probands with MS, 121 of their unaffected siblings and 103 healthy controls were studied. Personal history was taken, and serological and genetic analysis using the illumina immunochip was performed. Odds ratios for MS associated with each risk factor were derived from existing literature, and the log values of the odds ratios from each of the risk factors were combined in an additive model to provide an overall score. Scores were initially calculated using log odds ratio from the HLA-DRB1*1501 allele only, secondly using data from all MS-associated SNPs identified in the 2011 GWAS. Subjects with extreme risk scores underwent validation studies. MRI was performed on selected individuals.There was a significant difference in the both risk scores between people with MS, their unaffected siblings and healthy controls (p<0.0005). Unaffected siblings had a risk score intermediate to people with MS and controls (p<0.0005). The best performing risk score generated an AUC of 0.82 (95%CI 0.75–0.88).The risk score demonstrates an AUC on the threshold for clinical utility. Our score enables the identification of a high-risk sibling group to inform pre-symptomatic longitudinal studies

    Algorithms for effective querying of compound graph-based pathway databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Graph-based pathway ontologies and databases are widely used to represent data about cellular processes. This representation makes it possible to programmatically integrate cellular networks and to investigate them using the well-understood concepts of graph theory in order to predict their structural and dynamic properties. An extension of this graph representation, namely hierarchically structured or compound graphs, in which a member of a biological network may recursively contain a sub-network of a somehow logically similar group of biological objects, provides many additional benefits for analysis of biological pathways, including reduction of complexity by decomposition into distinct components or modules. In this regard, it is essential to effectively query such integrated large compound networks to extract the sub-networks of interest with the help of efficient algorithms and software tools.</p> <p>Results</p> <p>Towards this goal, we developed a querying framework, along with a number of graph-theoretic algorithms from simple neighborhood queries to shortest paths to feedback loops, that is applicable to all sorts of graph-based pathway databases, from PPIs (protein-protein interactions) to metabolic and signaling pathways. The framework is unique in that it can account for compound or nested structures and ubiquitous entities present in the pathway data. In addition, the queries may be related to each other through "AND" and "OR" operators, and can be recursively organized into a tree, in which the result of one query might be a source and/or target for another, to form more complex queries. The algorithms were implemented within the querying component of a new version of the software tool P<smcaps>ATIKA</smcaps><it>web </it>(Pathway Analysis Tool for Integration and Knowledge Acquisition) and have proven useful for answering a number of biologically significant questions for large graph-based pathway databases.</p> <p>Conclusion</p> <p>The P<smcaps>ATIKA</smcaps> Project Web site is <url>http://www.patika.org</url>. P<smcaps>ATIKA</smcaps><it>web </it>version 2.1 is available at <url>http://web.patika.org</url>.</p

    Red Fluorescent Protein-Aequorin Fusions as Improved Bioluminescent Ca2+ Reporters in Single Cells and Mice

    Get PDF
    Bioluminescence recording of Ca2+ signals with the photoprotein aequorin does not require radiative energy input and can be measured with a low background and good temporal resolution. Shifting aequorin emission to longer wavelengths occurs naturally in the jellyfish Aequorea victoria by bioluminescence resonance energy transfer (BRET) to the green fluorescent protein (GFP). This process has been reproduced in the molecular fusions GFP-aequorin and monomeric red fluorescent protein (mRFP)-aequorin, but the latter showed limited transfer efficiency. Fusions with strong red emission would facilitate the simultaneous imaging of Ca2+ in various cell compartments. In addition, they would also serve to monitor Ca2+ in living organisms since red light is able to cross animal tissues with less scattering. In this study, aequorin was fused to orange and various red fluorescent proteins to identify the best acceptor in red emission bands. Tandem-dimer Tomato-aequorin (tdTA) showed the highest BRET efficiency (largest energy transfer critical distance R0) and percentage of counts in the red band of all the fusions studied. In addition, red fluorophore maturation of tdTA within cells was faster than that of other fusions. Light output was sufficient to image ATP-induced Ca2+ oscillations in single HeLa cells expressing tdTA. Ca2+ rises caused by depolarization of mouse neuronal cells in primary culture were also recorded, and changes in fine neuronal projections were spatially resolved. Finally, it was also possible to visualize the Ca2+ activity of HeLa cells injected subcutaneously into mice, and Ca2+ signals after depositing recombinant tdTA in muscle or the peritoneal cavity. Here we report that tdTA is the brightest red bioluminescent Ca2+ sensor reported to date and is, therefore, a promising probe to study Ca2+ dynamics in whole organisms or tissues expressing the transgene

    Consequences of perinatal treatment with l-arginine and antioxidants for the renal transcriptome in spontaneously hypertensive rats

    Get PDF
    Treating spontaneously hypertensive rats (SHR) with l-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar–Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved

    A Cell Cycle Role for the Epigenetic Factor CTCF-L/BORIS

    Get PDF
    CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, downregulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p
    • …
    corecore