44 research outputs found

    Molecular markers of risk of subsequent invasive breast cancer in women with ductal carcinoma in situ: protocol for a population-based cohort study

    Get PDF
    INTRODUCTION: Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of invasive breast cancer (IBC). Many DCIS patients are either undertreated or overtreated. The overarching goal of the study described here is to facilitate detection of patients with DCIS at risk of IBC development. Here, we propose to use risk factor data and formalin-fixed paraffin-embedded (FFPE) DCIS tissue from a large, ethnically diverse, population-based cohort of 8175 women with a first diagnosis of DCIS and followed for subsequent IBC to: identify/validate miRNA expression changes in DCIS tissue associated with risk of subsequent IBC; evaluate ipsilateral IBC risk in association with two previously identified marker sets (triple immunopositivity for p16, COX-2, Ki67; Oncotype DX Breast DCIS score); examine the association of risk factor data with IBC risk. METHODS AND ANALYSIS: We are conducting a series of case-control studies nested within the cohort. Cases are women with DCIS who developed subsequent IBC; controls (2/case) are matched to cases on calendar year of and age at DCIS diagnosis. We project 485 cases/970 controls in the aim focused on risk factors. We estimate obtaining FFPE tissue for 320 cases/640 controls for the aim focused on miRNAs; of these, 173 cases/346 controls will be included in the aim focused on p16, COX-2 and Ki67 immunopositivity, and of the latter, 156 case-control pairs will be included in the aim focused on the Oncotype DX Breast DCIS score®. Multivariate conditional logistic regression will be used for statistical analyses. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Institutional Review Boards of Albert Einstein College of Medicine (IRB 2014-3611), Kaiser Permanente Colorado, Kaiser Permanente Hawaii, Henry Ford Health System, Mayo Clinic, Marshfield Clinic Research Institute and Hackensack Meridian Health, and from Lifespan Research Protection Office. The study results will be presented at meetings and published in peer-reviewed journals

    A metastasis biomarker (MetaSite Breast™ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer

    Get PDF
    Metastasis is the primary cause of death in early-stage breast cancer. We evaluated the association between a metastasis biomarker, which we call "Tumor Microenviroment of Metastasis" (TMEM), and risk of recurrence. TMEM are microanatomic structures where invasive tumor cells are in direct contact with endothelial cells and macrophages, and which serve as intravasation sites for tumor cells into the circulation. We evaluated primary tumors from 600 patients with Stage I-III breast cancer treated with adjuvant chemotherapy in trial E2197 (NCT00003519), plus endocrine therapy for hormone receptor (HR)+ disease. TMEM were identified and enumerated using an analytically validated, fully automated digital pathology/image analysis method (MetaSite Breast™), hereafter referred to as MetaSite Score (MS). The objectives were to determine the association between MS and distant relapse free interval (DRFI) and relapse free interval (RFI). MS was not associated with tumor size or nodal status, and correlated poorly with Oncotype DX Recurrence Score (r = 0.29) in 297 patients with HR+/HER2- disease. Proportional hazards models revealed a significant positive association between continuous MS and DRFI (p = 0.001) and RFI (p = 0.00006) in HR+/HER2- disease in years 0-5, and by MS tertiles for DRFI (p = 0.04) and RFI (p = 0.01), but not after year 5 or in triple negative or HER2+ disease. Multivariate models in HR+/HER- disease including continuous MS, clinical covariates, and categorical Recurrence Score ( 30) showed MS is an independent predictor for 5-year RFI (p = 0.05). MetaSite Score provides prognostic information for early recurrence complementary to clinicopathologic features and Recurrence Score.Breast Cancer Research Foundatio

    Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression

    Get PDF
    International audienceABSTRACT: INTRODUCTION: Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas including colorectal, head and neck, ovarian and breast, compared to normal tissue. Mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. METHODS: Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA, and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the Polyoma Virus Middle T antigen mouse model (PyMT). MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distribution and affect on cell migration. RESULTS: An overall increase in gene amplification and altered expression of SEPT9 was observed during breast tumorigenesis. We identified an intragenic alternative promoter whose methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. CONCLUSIONS: In this study we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform specific expression and function

    An EMT-Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype

    Get PDF
    Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.National Institutes of Health (U.S.) (R01-HG002439)National Science Foundation (U.S.) (equipment grant)National Institutes of Health (U.S.) (Integrative Cancer Biology Program Grant U54-CA112967)David H. Koch Institute for Integrative Cancer Research at MIT (Ludwig Center for Metastasis Research)David H. Koch Institute for Integrative Cancer Research at MITMassachusetts Institute of Technology (Croucher Scholarship)Massachusetts Institute of Technology (Ludwig Fund postdoctoral fellowship)National Institutes of Health (U.S.) (NIH CA100324)National Institutes of Health (U.S.) (AECC9526-5267

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth

    Get PDF
    Abstract Background Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. Methods We crossed AREG-null (AREG−/−) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG−/− PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. Results Intriguingly, PyMT-induced lesions progress more rapidly in AREG−/− mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG−/− mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG−/− PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. Conclusions Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer
    corecore