238 research outputs found

    On the contribution of thermal excitation to the total 630.0 nm emissions in the northern cusp ionosphere

    Get PDF
    Direct impact excitation by precipitating electrons is believed to be the main source of 630.0 nm emissions in the cusp ionosphere. However, this paper investigates a different source, 630.0 emissions caused by thermally excited atomic oxygen O(1(^{1}D) when high electron temperature prevail in the cusp. On 22 January 2012 and 14 January 2013, the European Incoherent Scatter Scientific Association (EISCAT) radar on Svalbard measured electron temperature enhancements exceeding 3000 K near magnetic noon in the cusp ionosphere over Svalbard. The electron temperature enhancements corresponded to electron density enhancements exceeding 101110^{11}m−3^{-3} accompanied by intense 630.0 nm emissions in a field of view common to both the EISCAT Svalbard radar and a meridian scanning photometer. This offered an excellent opportunity to investigate the role of thermally excited O(1(^{1}D) 630.0 nm emissions in the cusp ionosphere. The thermal component was derived from the EISCAT Radar measurements and compared with optical data. For both events the calculated thermal component had a correlation coefficient greater than 0.8 to the total observed 630.0 nm intensity which contains both thermal and particle impact components. Despite fairly constant solar wind, the calculated thermal component intensity fluctuated possibly due to dayside transients in the aurora

    Space weather challenges of the polar cap ionosphere

    Get PDF
    This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches,which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented high resolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently... (continued

    GPS scintillations associated with cusp dynamics and polar cap patches

    Get PDF
    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval

    On a new process for cusp irregularity production

    Get PDF
    Two plasma instability mechanisms were thought until 2007 to dominate the formation of plasma irregularities in the F region high latitude and polar ionosphere; the gradient-drift driven instability, and the velocity-shear driven instability. The former mechanism was accepted as accounting for plasma structuring in polar cap patches, the latter for plasma structuring in polar cap sun aligned arcs. Recent work has established the need to replace this view of the past two decades with a new patch plasma structuring process (not a new mechanism), whereby shear-driven instabilities first rapidly structure the entering plasma, after which gradient drift instabilities build on these large "seed" irregularities. Correct modeling of cusp and early polar cap patch structuring will not be accomplished without allowing for this compound process. This compound process explains several previously unexplained characteristics of cusp and early polar cap patch irregularities. Here we introduce additional data, coincident in time and space, to extend that work to smaller irregularity scale sizes and relate it to the structured cusp current system

    A statistical study of polar cap flow channels and their IMF by dependence

    Get PDF
    An algorithm to detect high-speed ionospheric flow channels (FCs) in the polar cap was applied to data from the Longyearbyen radar of the Super Dual Auroral Radar Network. The Longyearbyen radar is at high latitude (78.2°N, 16.0°E geographic coordinates) and points northeast; therefore, it is in an ideal position for measuring zonal flows in the polar cap. The algorithm detected 998 events in the dayside polar cap region over 2 years of observations. The detected FCs typically were between 200 and 300 km latitudinal width, 1.1–1.3 km s−1 peak velocity, and 3 min in duration. The FC location shows an interplanetary magnetic field (IMF) By dependency, moving dawnward/duskward for a +By/−By. The FC monthly occurrence shows a bimodal distribution with peaks around the spring and autumn equinoxes, likely due to increased coupling between the solar wind-magnetosphere-ionosphere system at these times. The highest peak velocities show an absence of broad FC widths, suggesting that as the flow speed increases in the polar cap, the channels become more localized and narrow.publishedVersio

    F-region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes

    Get PDF
    Structured particle precipitation in the cusp is an important source for the generation of F-region ionospheric irregularities. The equatorward boundaries of broad Doppler spectral width in Super Dual Auroral Radar Network (SuperDARN) data and the concurrent OI 630.0 nm auroral emission are good empirical proxies for the dayside open-closed field line boundary (OCB). However, SuperDARN currently employs a simple virtual model to determine the location of its echoes, instead of a direct calculation of the radio wave path. The varying ionospheric conditions could influence the final mapping accuracy of SuperDARN echoes. A statistical comparison of the offsets between the SuperDARN Finland radar spectral width boundary (SWB) and the OI 630.0 nm auroral emission boundary (AEB) from a meridian-scanning photometer (MSP) on Svalbard is performed in this paper. By restricting the location of the 630.0 nm data to be near local zenith where the MSP has the highest spatial resolution, the optical mapping errors were significantly reduced. The variation of the SWB – AEB offset confirms that there is a close relationship between the mapping accuracy of the HF radar echoes and solar activity. The asymmetric variation of the SWB – AEB offset versus magnetic local time suggests that the intake of high density solar extreme ultraviolet ionized plasma from post-noon at sub-auroral latitudes could result in a stronger refraction of the HF radar signals in the noon sector. While changing the HF radar operating frequency also has a refraction effect that contributes to the final location of the HF radar echoes
    • …
    corecore