28 research outputs found

    Hybrid and Conventional Baryons in the Flux-Tube and Quark Models

    Full text link
    The status of conventional baryon flux-tubes and hybrid baryons is reviewed. Recent surprises are that a model prediction indicates that hybrid baryons are very weakly produced in glue-rich Psi decays, and an analysis of electro-production data concludes that the Roper resonance is not a hybrid baryon. The baryon decay flux-tube overlap has been calculated in the flux-tube model, and is discussed here. The behavior of the overlap follows naive expectations.Comment: Invited plenary talk presented at the 10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2004), 29 August - 4 September, Beijing, China. LaTeX, 11 (encapsulated) postscript figures, 6 page

    Lattice QCD Study for the Interquark Force in Three-Quark and Multi-Quark Systems

    Full text link
    We study the three-quark and multi-quark potentials in SU(3) lattice QCD. From the accurate calculation for more than 300 different patterns of 3Q systems, the static ground-state 3Q potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} is found to be well described by the Coulomb plus Y-type linear potential (Y-Ansatz) within 1%-level deviation. As a clear evidence for Y-Ansatz, Y-type flux-tube formation is actually observed on the lattice in maximally-Abelian projected QCD. For about 100 patterns of 3Q systems, we perform the accurate calculation for the 1st excited-state 3Q potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} by diagonalizing the QCD Hamiltonian in the presence of three quarks, and find a large gluonic-excitation energy ΔE3QV3Qe.s.V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} of about 1 GeV, which gives a physical reason of the success of the quark model. ΔE3Q\Delta E_{\rm 3Q} is found to be reproduced by the ``inverse Mercedes Ansatz'', which indicates a complicated bulk excitation for the gluonic-excitation mode. We study also the tetra-quark and the penta-quark potentials in lattice QCD, and find that they are well described by the OGE Coulomb plus multi-Y type linear potential, which supports the flux-tube picture even for the multi-quarks. Finally, the narrow decay width of penta-quark baryons is discussed in terms of the QCD string theory.Comment: Invited talk at Int. Conference on Quark Confinement and the Hadron Spectrum 6, Sardinia, Italy, 21-25 Sep 200

    Role of Large Gluonic Excitation Energy for Narrow Width of Penta-Quark Baryons in QCD String Theory

    Full text link
    We study the narrow decay width of low-lying penta-quark baryons in the QCD string theoryin terms of gluonic excitations. In the QCD string theory, the penta-quark baryon decays via a gluonic-excited state of a baryon and meson system, where a pair of Y-shaped junction and anti-junction is created. Since lattice QCD shows that the lowest gluonic-excitation energy takes a large value of about 1 GeV, the decay of the penta-quark baryon near the threshold is considered as a quantum tunneling process via a highly-excited state (a gluonic-excited state) in the QCD string theory. This mechanism strongly suppresses the decay and leads to an extremely narrow decay width of the penta-quark system.Comment: Talk given at International Conference on the Structure of Baryons (Baryons 04) October 25 - 29, 2004, Ecole Polytechnique, Palaiseau, Franc

    A study of colour field distributions in the baryon

    Full text link
    The distributions of chromo-electric and chromo-magnetic field associated with flux tubes in the baryon are studied in SU(3) lattice QCD. Maximal Abelian projection is used to reduce the statistical fluctuations. For a fixed source geometry, many different string configurations are possible. We investigated whether the string configuration, that is the choice of operator, biases the observed flux distribution.Comment: 3 pages, 3 figures, talk given at Lattice2003(topology

    Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet

    Full text link
    Anti-decuplet penta-quark baryon is studied with the quenched anisotropic lattice QCD for accurate measurement of the correlator. Both the positive and negative parity states are studied using a non-NK type interpolating field with I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified with the experimentally observed Theta^+(1540). The lowest negative parity state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the empirical value. To confirm that this state is a compact 5Q resonance, a new method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis shows that the observed state in the negative parity channel is an NK scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004 at SPring-8, Japan, 8 pages, 7 figures, 2 table

    Tetraquark and Pentaquark Systems in Lattice QCD

    Get PDF
    Motivated by the recent experimental discoveries of multi-quark candidates, e.g., the Θ+(1540)\Theta^+(1540), we study multi-quark systems in lattice QCD. First, we perform accurate mass measurements of low-lying 5Q states with J=1/2J=1/2 and I=0 in both positive- and negative-parity channels in anisotropic lattice QCD. The lowest positive-parity 5Q state is found to have a large mass of about 2.24GeV after the chiral extrapolation. To single out the compact 5Q state from NKNK scattering states, we develop a new method with the hybrid-boundary condition (HBC), and find no evidence of the compact 5Q state below 1.75GeV in the negative-parity channel. Second, we perform the first study of the multi-quark potential in lattice QCD to clarify the inter-quark interaction in multi-quark systems. The 5Q potential V5QV_{\rm 5Q} for the QQ-Qˉ{\rm \bar{Q}}-QQ system is found to be well described by the ``OGE Coulomb plus multi-Y Ansatz": the sum of the one-gluon-exchange (OGE) Coulomb term and the multi-Y-type linear term based on the flux-tube picture. The 4Q potential V4QV_{\rm 4Q} for the QQ-QˉQˉ{\rm \bar{Q}\bar{Q}} system is also described by the OGE Coulomb plus multi-Y Ansatz, when QQ and QˉQˉ\rm \bar Q \bar Q are well separated. The 4Q system is described as a "two-meson" state with disconnected flux tubes, when the nearest quark and antiquark pair is spatially close. We observe a lattice-QCD evidence for the ``flip-flop'', i.e., the flux-tube recombination between the connected 4Q state and the ``two-meson'' state. On the confinement mechanism, the lattice QCD results indicate the flux-tube-type linear confinement in multi-quark hadrons.Comment: 22 pages, 3 tables, 16 figures. Talk given at International Workshop on Quark Nuclear Physics 2005 (QNP05), Phoenix Park, Korea, 22-24, Feb., 200

    An alternate smearing method for Wilson loops in lattice QCD

    Full text link
    A gauge field link smearing method developed for calculations with staggered fermions, namely the use of unitarized fat7 links, is applied to mesonic and baryonic Wilson loop calculations. This method is found to be very effective for reducing statistical fluctuations for large Wilson loops. Examination of chromo-electric field distributions shows that self-interactions of the static sources are reduced when unitarized fat7 smearing is used but long-distance inter-quark effects are unchanged.Comment: 17 pages with 9 figures, figure and reference adde

    Four-quark stability

    Get PDF
    The physics of charm has become one of the best laboratories exposing the limitations of the naive constituent quark model and also giving hints into a more mature description of meson spectroscopy, beyond the simple quark--antiquark configurations. In this talk we review some recent studies of multiquark components in the charm sector and discuss in particular exotic and non-exotic four-quark systems, both with pairwise and many-body forces.Comment: 6 pages. Article based on the presentations by J. Vijande and J.-M. Richard at the Fifth Workshop on Critical Stability, Erice, Sicil

    Exploration of hyperfine interaction between constituent quarks via eta productions

    Full text link
    In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, πpηn\pi^{-}p\rightarrow\eta n and γpηp\gamma p\rightarrow\eta p. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.Comment: 7 pages, 4 figures, 4 table

    k-strings and baryon vertices in SU(N) gauge theories

    Full text link
    It is pointed out that the sine law for the k-string tension emerges as the critical threshold below which the spatial Z_N symmetry of the static baryon potential is spontaneously broken. This result applies not only to SU(N) gauge theories, but to any gauge system with stable k-strings admitting a baryon vertex made with N sources in the fundamental representation. Some simple examples are worked out.Comment: 4 pages, 4 figures, v2: reference added, v3: comments and references adde
    corecore