36 research outputs found

    Altered versican cleavage in ADAMTS5 deficient mice : a novel etiology of myxomatous valve disease

    Get PDF
    AbstractIn fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    INVOLVEMENT OF HUMAN HEPATIC UGT1A1, UGT2B4, AND UGT2B7 IN THE GLUCURONIDATION OF CARVEDILOL

    No full text
    This article is available online at http://dmd.aspetjournals.org ABSTRACT: Carvedilol ((؎)-1-carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol) is metabolized primarily into glucuronide conjugates. In the present study, we identified the human UDPglucuronosyltransferase (UGT) isoforms involved in the glucuronidation of carvedilol by thin-layer chromatography using microsomes from human liver or insect cells expressing recombinant UGT isoforms. We observed two forms of carvedilol glucuronides, namely G1 and G2, in hepatic microsomes. The glucuronidation of carvedilol was catalyzed by at least three recombinant UGT isoforms: UGT1A1, UGT2B4, and UGT2B7. UGT2B4 formed both G1 and G2, whereas UGT1A1 and UGT2B7 were responsible for the formation of glucuronide G2 and G1, respectively. The enzyme kinetics for carvedilol glucuronidation by UGT1A1, UGT2B4, and UGT2B7 in addition to human liver microsomes were examined by Lineweaver-Burk analysis. The values of K m and V max for human liver microsomes were 26.6 M and 106 pmol/min/mg protein for G1, and 46.0 M and 44.5 pmol/min/mg protein for G2, respectively. The K m values for UGT1A1, UGT2B4, and UGT2B7 for G1 and G2 (22.1-55.1 M) were comparable to those of the liver microsomes, whereas the V max values were in the range of 3.33 to 7.88 pmol/min/mg protein. The K m and V max /K m values for UGT2B4 and UGT2B7 for G1 were similar, whereas UGT2B4 had lower Km and higher V max /K m values for G2 compared with those of UGT1A1. These results suggest that G1 formation is catalyzed by UGT2B4 and UGT2B7, whereas G2 is formed by UGT2B4 and UGT1A1. These three hepatic UGT isoforms may have important roles in carvedilol metabolism
    corecore