4,702 research outputs found

    Background Rejection in Atmospheric Cherenkov Telescopes using Recurrent Convolutional Neural Networks

    Full text link
    In this work, we present a new, high performance algorithm for background rejection in imaging atmospheric Cherenkov telescopes. We build on the already popular machine-learning techniques used in gamma-ray astronomy by the application of the latest techniques in machine learning, namely recurrent and convolutional neural networks, to the background rejection problem. Use of these machine-learning techniques addresses some of the key challenges encountered in the currently implemented algorithms and helps to significantly increase the background rejection performance at all energies. We apply these machine learning techniques to the H.E.S.S. telescope array, first testing their performance on simulated data and then applying the analysis to two well known gamma-ray sources. With real observational data we find significantly improved performance over the current standard methods, with a 20-25\% reduction in the background rate when applying the recurrent neural network analysis. Importantly, we also find that the convolutional neural network results are strongly dependent on the sky brightness in the source region which has important implications for the future implementation of this method in Cherenkov telescope analysis.Comment: 11 pages, 7 figures. To be submitted to The European Physical Journal

    Quantum Hole Digging in Magnetic Molecular Clusters

    Full text link
    Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime. We showed recently that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measured the distribution P(H) of molecules which are in resonance at the applied field H. Tunnelling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P(H). For small initial magnetisation values, the hole width shows an intrinsic broadening which may be due to nuclear spins. We present here hole digging measurements in the thermal activated regime which may allow to study the effect of spin-phonon coupling.Comment: 3 pages, 2 figures, conference proceedings of LT22 (Helsinki, Finland, August 4-11, 1999

    Tool actuation and force feedback on robot-assisted microsurgery system

    Get PDF
    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator

    Near threshold eta meson production in the d+d->alpha+eta reaction

    Full text link
    The d+d->alpha+eta reaction has been investigated near threshold using the ANKE facility at COSY-Juelich. Both total and differential cross sections have been measured at two excess energies, Q=2.6 MeV and 7.7 MeV, with a subthreshold measurement being undertaken at Q=-2.6 MeV to study the physical background. While consistent with isotropy at the lower energy, the angular distribution reveals a pronounced anisotropy at the higher one, indicating the presence of higher partial waves. Options for the decomposition into partial amplitudes and their consequences for determination of the s-wave eta-alpha scattering length are discussed.Comment: 8pp, fig.3 added, normalisation in eq.4.1 correcte

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ÎČ-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet

    Get PDF
    The spin-lattice relaxation rate T1−1T_{1}^{-1} and NMR spectra of 1^1H in single crystal molecular magnets of Fe8 have been measured down to 15 mK. The relaxation rate T1−1T_1^{-1} shows a strong temperature dependence down to 400 mK. The relaxation is well explained in terms of the thermal transition of the iron state between the discreet energy levels of the total spin S=10. The relaxation time T1T_1 becomes temperature independent below 300 mK and is longer than 100 s. In this temperature region stepwise recovery of the 1^1H-NMR signal after saturation was observed depending on the return field of the sweep field. This phenomenon is attributed to resonant quantum tunneling at the fields where levels cross and is discussed in terms of the Landau-Zener transition.Comment: 13 pages, 5 figure
    • 

    corecore