115 research outputs found
Angular Dependence of the High-Magnetic-Field Phase Diagram of URu2Si2
We present measurements of the magnetoresistivity RHOxx of URu2Si2 single
crystals in high magnetic fields up to 60 T and at temperatures from 1.4 K to
40 K. Different orientations of the magnetic field have been investigated
permitting to follow the dependence on Q of all magnetic phase transitions and
crossovers, where Q is the angle between the magnetic field and the easy-axis
c. We find out that all magnetic transitions and crossovers follow a simple
1/cos(Q) -law, indicating that they are controlled by the projection of the
field on the c-axis
Re-entrant hidden order at a metamagnetic quantum critical end point
Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T
reveal that the hidden order phase is destroyed before appearing in the form of
a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant
electron metamagnetism at higher temperatures suggests that the re-entrant
phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a
systematic error in the field calibration has been fixed since the original
submission of this manuscrip
N-terminal Sumoylation of Centromeric Histone H3 Variant Cse4 Regulates Its Proteolysis To Prevent Mislocalization to Non-centromeric Chromatin
Stringent regulation of cellular levels of evolutionarily conserved centromeric histone H3 variant (CENP-A in humans, CID in flies, Cse4 in yeast) prevents its mislocalization to non-centromeric chromatin. Overexpression and mislocalization of CENP-A has been observed in cancers and leads to aneuploidy in yeast, flies, and human cells. Ubiquitin-mediated proteolysis of Cse4 by E3 ligases such as Psh1 and Sumo-Targeted Ubiquitin Ligase (STUbL) Slx5 prevent mislocalization of Cse4. Previously, we identified Siz1 and Siz2 as the major E3 ligases for sumoylation of Cse4. In this study, we have identified lysine 65 (K65) in Cse4 as a site that regulates sumoylation and ubiquitin-mediated proteolysis of Cse4 by Slx5. Strains expressing cse4 K65R exhibit reduced levels of sumoylated and ubiquitinated Cse4 in vivo. Furthermore, co-immunoprecipitation experiments reveal reduced interaction of cse4 K65R with Slx5, leading to increased stability and mislocalization of cse4 K65R under normal physiological conditions. Based on the increased stability of cse4 K65R in psh1 strains but not in slx5 strains, we conclude that Slx5 targets sumoylated Cse4 K65 for ubiquitination-mediated proteolysis independent of Psh1. In summary, we have identified and characterized the physiological role of Cse4 K65 in sumoylation, ubiquitin-mediated proteolysis, and localization of Cse4 for genome stability
SUMO-Targeted Ubiquitin Ligases (STUbLs) Reduce the Toxicity and Abnormal Transcriptional Activity Associated With a Mutant, Aggregation-Prone Fragment of Huntingtin
Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington\u27s Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Delta and slx8Delta cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt\u27s transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells
Field Reentrance of the Hidden Order State of URu2Si2 under Pressure
Combination of neutron scattering and thermal expansion measurements under
pressure shows that the so-called hidden order phase of URu2Si2 reenters in
magnetic field when antiferromagnetism (AF) collapses at H_AF (T). Macroscopic
pressure studies of the HO-AF boundaries were realized at different pressures
via thermal expansion measurements under magnetic field using a strain gauge.
Microscopic proof at a given pressure is the reappearance of the resonance at
Q_0=(1,0,0) under field which is correlated with the collapse of the AF Bragg
reflections at Q_0.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp
Magnetic Exciton Mediated Superconductivity in the Hidden-Order Phase of URu2Si2
We propose the magnetic exciton mediated superconductivity occurring in the
enigmatic hidden-order phase of URu2Si2. The characteristic of the massive
collective excitation observed only in the hidden-order phase is well
reproduced by the antiferro hexadecapole ordering model as the trace of the
dispersive crystalline-electric-field excitation. The disappearance of the
superconductivity in the high-pressure antiferro magnetic phase can naturally
be understood by the sudden suppression of the magnetic-exciton intensity. The
analysis of the momentum dependence of the magnetic-exciton mode leads to the
exotic chiral d-wave singlet pairing in the Eg symmetry. The Ising-like
magnetic-field response of the mode yields the strong anisotropy observed in
the upper critical field even for the rather isotropic 3-dimensional Fermi
surfaces of this compound.Comment: 5 pages, 4 figure
Theory of de Haas-van Alphen Effect in Type-II Superconductors
Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation
in type-II superconductors are developed based on the Bogoliubov-de Gennes
equations for vortex-lattice states. As the pair potential grows through the
superconducting transition, each degenerate Landau level in the normal state
splits into quasiparticle bands in the magnetic Brillouin zone. This brings
Landau-level broadening, which in turn leads to the extra dHvA oscillation
damping in the vortex state. We perform extensive numerical calculations for
three-dimensional systems with various gap structures. It is thereby shown that
(i) this Landau-level broadening is directly connected with the average gap at
H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra
dHvA oscillation attenuation is caused by the broadening around each extremal
orbit. These results imply that the dHvA experiment can be a unique probe to
detect band- and/or angle-dependent gap amplitudes. We derive an analytic
expression for the extra damping based on the second-order perturbation with
respect to the pair potential for the Luttinger-Ward thermodynamic potential.
This formula reproduces all our numerical results excellently, and is used to
estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn,
and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the
one through a specific-heat measurement, indicating presence of gap anisotropy
in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes
equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure
The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution
NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism
SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin
Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability
On the Hidden Order in URuSi --- Antiferro Hexadecapole Order and its Consequences
An antiferro ordering of an electric hexadecapole moment is discussed as a
promising candidate for the long standing mystery of the hidden order phase in
URuSi. Based on localized -electron picture, we discuss the
rationale of the selected multipole and the consequences of the antiferro
hexadecapole order of symmetry. The mean-field solutions and
the collective excitations from them explain reasonably significant
experimental observations: the strong anisotropy in the magnetic
susceptibility, characteristic behavior of pressure versus magnetic field or
temperature phase diagrams, disappearance of inelastic neutron-scattering
intensity out of the hidden order phase, and insensitiveness of the NQR
frequency at Ru-sites upon ordering. A consistency with the strong anisotropy
in the magnetic responses excludes all the multipoles in two-dimensional
representations, such as . The expected azimuthal angle
dependences of the resonant X-ray scattering amplitude are given. The
-type antiferro quadrupole should be induced by an in-plane
magnetic field along , which is reflected in the thermal expansion and
the elastic constant of the transverse mode. The
-type [-type] antiferro quadrupole is also induced by
applying the uniaxial stress along direction [ direction]. A
detection of these induced antiferro quadrupoles under the in-plane magnetic
field or the uniaxial stress using the resonant X-ray scattering provides a
direct redundant test for the proposed order parameter.Comment: 10 pages, 10 figures, 5 table
- …