1,336 research outputs found

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Cosmic microwave background and large scale structure limits on the interaction between dark matter and baryons

    Get PDF
    We study the effect on the cosmic microwave background (CMB) anisotropy and large scale structure (LSS) power spectrum of a scattering interaction between cold dark matter and baryons. This scattering alters the CMB anisotropy and LSS spectrum through momentum transfer between the cold dark matter particles and the baryons. We find that current CMB observations can put an upper limit on the scattering cross section which is comparable with or slightly stronger than previous disk heating constraints at masses greater than 1 GeV, and much stronger at smaller masses. When large-scale structure constraints are added to the CMB limits, our constraint is more stringent than this previous limit at all masses. In particular, a dark matter-baryon scattering cross section comparable to the ``Spergel-Steinhardt'' cross section is ruled out for dark matter mass greater than 1 GeV.Comment: 8 pages, 2 figures, use RevTeX4, submitted to PRD replaced with revised versio

    Energy-momentum uncertainties as possible origin of threshold anomalies in UHECR and TeV-gamma ray events

    Full text link
    A threshold anomaly refers to a theoretically expected energy threshold that is not observed experimentally. Here we offer an explanation of the threshold anomalies encountered in the ultra-high energy cosmic ray events and the TeV-gamma ray events, by arguing that energy-momentum uncertainties due to quantum gravity, too small to be detected in low-energy regime, can affect particle kinematics so as to raise or even eliminate the energy thresholds. A possible modification of the energy-momentum dispersion relation, giving rise to time-of-flight differences between photons of different energies from gamma ray bursts, is also discussed.Comment: minor changes in text and reference

    Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection

    Get PDF
    We present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-B\'enard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing-down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.Comment: 13 pages, 10 figures, 52 reference

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore