18 research outputs found

    OGLE-2005-BLG-071Lb, the Most Massive M-Dwarf Planetary Companion?

    Get PDF
    We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from Hubble Space Telescope, as well as constraints from higher order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M= 0.46 +/- 0.04 Msun, distance D_l = 3.3 +/- 0.4 kpc, and thick-disk kinematics v_LSR ~ 103 km/s. From the best-fit model, the planet has mass M_p = 3.8 +/- 0.4 M_Jup, lies at a projected separation r_perp = 3.6 +/- 0.2 AU from its host and so has an equilibrium temperature of T ~ 55 K, i.e., similar to Neptune. A degenerate model less favored by \Delta\chi^2 = 2.1 (or 2.2, depending on the sign of the impact parameter) gives similar planetary mass M_p = 3.4 +/- 0.4 M_Jup with a smaller projected separation, r_\perp = 2.1 +/- 0.1 AU, and higher equilibrium temperature T ~ 71 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M-dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this primary analysis, which assumes (based on real but limited evidence) that the unlensed light coincident with the source is actually due to the lens, that is, the planetary host. However, these caveats could mostly be resolved by a single astrometric measurement a few years after the event.Comment: 51 pages, 12 figures, 3 tables, Published in Ap

    The question concerning human rights and human rightlessness: disposability and struggle in the Bhopal gas disaster

    Get PDF
    In the midst of concerns about diminishing political support for human rights, individuals and groups across the globe continue to invoke them in their diverse struggles against oppression and injustice. Yet both those concerned with the future of human rights and those who champion rights activism as essential to resistance, assume that human rights – as law, discourse and practices of rights claiming – can ameliorate rightlessness. In questioning this assumption, this article seeks also to reconceptualise rightlessness by engaging with contemporary discussions of disposability and social abandonment in an attempt to be attentive to forms of rightlessness co-emergent with the operations of global capital. Developing a heuristic analytics of rightlessness, it evaluates the relatively recent attempts to mobilise human rights as a frame for analysis and action in the campaigns for justice following the 3 December 1984 gas leak from Union Carbide Corporation’s (UCC) pesticide manufacturing plant in Bhopal, India. Informed by the complex effects of human rights in the amelioration of rightlessness, the article calls for reconstituting human rights as an optics of rightlessness

    A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus

    Get PDF
    <div><p>Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the <i>Drosophila</i>/<i>Sophophora</i> genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in <i>D. melanogaster</i>, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in <i>D. melanogaster</i> reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient.</p></div

    Decolonizing Britain: An Exchange

    No full text
    corecore