609 research outputs found
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Electronic and atomic shell structure in aluminum nanowires
We report experiments on aluminum nanowires in ultra-high vacuum at room
temperature that reveal a periodic spectrum of exceptionally stable structures.
Two "magic" series of stable structures are observed: At low conductance, the
formation of stable nanowires is governed by electronic shell effects whereas
for larger contacts atomic packing dominates. The crossover between the two
regimes is found to be smooth. A detailed comparison of the experimental
results to a theoretical stability analysis indicates that while the main
features of the observed electron-shell structure are similar to those of
alkali and noble metals, a sequence of extremely stable wires plays a unique
role in Aluminum. This series appears isolated in conductance histograms and
can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure
Influence of bacterial dynamics upon the final characteristics
The microbiological profile in raw milk cheeses is typically characterized by a multitude of microbial
groups, with interactions among them throughout ripening that are not fully understood to date. Incidence
of undesired microorganisms in raw cheesemaking milk, as is the case of either spoilage or even
pathogenic ones, is a common trait in Portuguese traditional cheeses. Hence, they will likely contribute
to the physicochemical changes occurring therein and, consequently, to the characteristics of the final
product. In order to gain insight into their role, model cheese systems, manufactured as far as possible
according to artisanal practices (except that the initial microbial load and biodiversity were controlled),
were experimentally tested. Single contaminants, or a consortium thereof, were inoculated at two levels
in sterilized raw ewe's milk, and duly combined with inocula containing one or two lactic acid bacteria
normally found in those traditional cheeses. The physicochemical composition, organic acid profile, and
evolution of both protein breakdown and rheology were monitored throughout a 60 d-ripening period.
Modifications brought about within the cheese matrix as a result of microbial metabolism, especially
those arising from the interaction between lactic acid bacteria and unwanted microorganisms, included
the enhanced release of peptides and free amino acids, which in turn led to higher viscoelastic moduli.
The final model cheeses could be well discriminated, based on the impact of the various inocula
considered upon the levels of organic acids. Conversely, proteolysis and viscoelastic properties appeared
to be essentially independent of the initial microflora.info:eu-repo/semantics/publishedVersio
Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission Line Strength
Although the spectrum of a prototypical early-type galaxy is assumed to lack
emission lines, a substantial fraction (likely as high as 30%) of nearby red
sequence galaxy spectra contain emission lines with line ratios characteristic
of low ionization nuclear emission-line regions (LINERs). We use spectra of
~6000 galaxies from the Sloan Digital Sky Survey (SDSS) in a narrow redshift
slice (0.06 < z < 0.08) to compare the stellar populations of red sequence
galaxies with and without LINER-like emission. The spectra are binned by
internal velocity dispersion and by emission properties to produce high S/N
stacked spectra. The recent stellar population models of R. Schiavon (2007)
make it possible to measure ages, [Fe/H], and individual elemental abundance
ratios [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for each of the stacked spectra. We
find that red sequence galaxies with strong LINER-like emission are
systematically 2-3.5 Gyr (10-40%) younger than their emission-free counterparts
at the same velocity dispersion. This suggests a connection between the
mechanism powering the emission (whether AGN, post-AGB stars, shocks, or
cooling flows) and more recent star formation in the galaxy. We find that mean
stellar age and [Fe/H] increase with velocity dispersion for all galaxies.
Elemental abundance [Mg/Fe] increases modestly with velocity dispersion in
agreement with previous results, and [C/Fe] and [N/Fe] increase more strongly
with velocity dispersion than does [Mg/Fe]. [Ca/Fe] appears to be roughly solar
for all galaxies. At fixed velocity dispersion, galaxies with fainter r-band
luminosities have lower [Fe/H] and older ages but similar abundance ratios
compared to brighter galaxies.Comment: 25 pages, 17 figures, Accepted for publication in ApJ as of 16 July
2007; acceptance status updated, paper unchange
Effect of Al addition to Rapidly Solidified Mg-Cu-Rare Earth Alloys
Rapidly solidified Mg based alloys are of interest for industrial applications as a structural material and for hydrogen storage. Mg-Cu-Rare Earth alloys have shown high glass forming ability; full amorphous structure with thickness of mm size can be obtained within these systems. However, their brittle behavior limits their industrial applications. In the present work, the Al effect in substitution of Cu in the Mg65Cu25MM10 (at%, MM: mischmetal) was studied. Samples up to 15at% Al were prepared by splat cooling and their microstructure, stability and mechanical properties were characterised. The crystallization temperature increases with the Al addition; the amorphous phase with different Al content has a Young's modulus of ~55GPa; the microhardness increases with the Al content in the amorphous and crystallized samples and the fracture of the alloy containing 10at% Al showed ductile vein patterns characteristics of ductile metallic glasses. The partial Cu substitution by Al can improve the stability and mechanical properties of the amorphous Mg65Cu25MM10 allo
Status of the Engineering Design of the IFMIF-DONES High Energy Beam Transport Line and Beam Dump System
IFMIF-DONES plant (International Fusion Materials Irradiation Facility ’ DEMO Oriented Neutron Source) will be an installation located in the south of Spain at Granada. Its objective is the fusion material testing by the generation of a neutron flux with a broad energy distribution covering the typical neutron spectrum of a (D-T) fusion reactor. This is achieved by the Li(d, xn) nuclear reactions occurring in a liquid lithium target where a 40 MeV at 125 mA deuteron beam with a variable rectangular beam footprint between 100mm x 50mm and 200mm x 50mm collides. The accelerator system is in charge of providing such high energy deuterons in order to produce the required neutron flux. The High Energy Beam Transport line is the last subsystem of the IFMIF-DONES accelerator and its main functions are to guide the deuteron beam towards the liquid lithium target and to shape it with the required rectangular reference beam footprint. The present work details the status of the HEBT engineering design, including beam dynamics, vacuum configuration, radioprotection, beam diagnostics devices and remote handling analyses performed detailing the layout and integration
Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations
The appearance of "magic" heights of Pb islands grown on Cu(111) is studied
by self-consistent electronic structure calculations. The Cu(111) substrate is
modeled with a one-dimensional pseudopotential reproducing the essential
features, i.e. the band gap and the work function, of the Cu band structure in
the [111] direction. Pb islands are presented as stabilized jellium overlayers.
The experimental eigenenergies of the quantum well states confined in the Pb
overlayer are well reproduced. The total energy oscillates as a continuous
function of the overlayer thickness reflecting the electronic shell structure.
The energies for completed Pb monolayers show a modulated oscillatory pattern
reminiscent of the super-shell structure of clusters and nanowires. The energy
minima correlate remarkably well with the measured most probable heights of Pb
islands. The proper modeling of the substrate is crucial to set the
quantitative agreement.Comment: 4 pages, 4 figures. Submitte
Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO
A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections
Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey
Studies of Galactic chemical and dynamical evolution in the solar
neighborhood depend on the availability of precise atmospheric parameters
(Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic
surveys operate at low to moderate spectral resolution for efficiency in
observing large samples, which makes the stellar characterization difficult due
to the high degree of blending of spectral features. While most surveys use
spectral synthesis, in this work we employ an alternative method based on
spectral indices to determine the atmospheric parameters of a sample of nearby
FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving
power (R~12,000). We have developed three codes to automatically normalize the
observed spectra, measure the equivalent widths of the indices and, through the
comparison of those with values calculated with pre-determined calibrations,
derive the atmospheric parameters of the stars. The calibrations were built
using a sample of 309 stars with precise stellar parameters obtained from the
analysis of high-resolution FEROS spectra. A validation test of the method was
conducted with a sample of 30 MARVELS targets that also have reliable
atmospheric parameters from high-resolution spectroscopic analysis. Our
approach was able to recover the parameters within 80 K for Teff, 0.05 dex for
[Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical
external uncertainties found between different high-resolution analyzes. An
additional test was performed with a subsample of 138 stars from the ELODIE
stellar library and the literature atmospheric parameters were recovered within
125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show
that the spectral indices are a competitive tool to characterize stars with the
intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv
standards regarding the number of character
The GalMer database: Galaxy Mergers in the Virtual Observatory
We present the GalMer database, a library of galaxy merger simulations, made
available to users through tools compatible with the Virtual Observatory (VO)
standards adapted specially for this theoretical database. To investigate the
physics of galaxy formation through hierarchical merging, it is necessary to
simulate galaxy interactions varying a large number of parameters:
morphological types, mass ratios, orbital configurations, etc. On one side,
these simulations have to be run in a cosmological context, able to provide a
large number of galaxy pairs, with boundary conditions given by the large-scale
simulations, on the other side the resolution has to be high enough at galaxy
scales, to provide realistic physics. The GalMer database is a library of
thousands simulations of galaxy mergers at moderate spatial resolution and it
is a compromise between the diversity of initial conditions and the details of
underlying physics. We provide all coordinates and data of simulated particles
in FITS binary tables. The main advantages of the database are VO access
interfaces and value-added services which allow users to compare the results of
the simulations directly to observations: stellar population modelling, dust
extinction, spectra, images, visualisation using dedicated VO tools. The GalMer
value-added services can be used as virtual telescope producing broadband
images, 1D spectra, 3D spectral datacubes, thus making our database oriented
towards the usage by observers. We present several examples of the GalMer
database scientific usage obtained from the analysis of simulations and
modelling their stellar population properties, including: (1) studies of the
star formation efficiency in interactions; (2) creation of old counter-rotating
components; (3) reshaping metallicity profiles in elliptical galaxies; (4)
orbital to internal angular momentum transfer; (5) reproducing observed colour
bimodality of galaxies.Comment: 15 pages, 11 figures, 10 tables accepted to A&A. Visualisation of
GalMer simulations, access to snapshot files and value-added tools described
in the paper are available at http://galmer.obspm.fr
- …