609 research outputs found

    Metallic properties of magnesium point contacts

    Get PDF
    We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.Comment: 14 pages, 5 figure

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Influence of bacterial dynamics upon the final characteristics

    Get PDF
    The microbiological profile in raw milk cheeses is typically characterized by a multitude of microbial groups, with interactions among them throughout ripening that are not fully understood to date. Incidence of undesired microorganisms in raw cheesemaking milk, as is the case of either spoilage or even pathogenic ones, is a common trait in Portuguese traditional cheeses. Hence, they will likely contribute to the physicochemical changes occurring therein and, consequently, to the characteristics of the final product. In order to gain insight into their role, model cheese systems, manufactured as far as possible according to artisanal practices (except that the initial microbial load and biodiversity were controlled), were experimentally tested. Single contaminants, or a consortium thereof, were inoculated at two levels in sterilized raw ewe's milk, and duly combined with inocula containing one or two lactic acid bacteria normally found in those traditional cheeses. The physicochemical composition, organic acid profile, and evolution of both protein breakdown and rheology were monitored throughout a 60 d-ripening period. Modifications brought about within the cheese matrix as a result of microbial metabolism, especially those arising from the interaction between lactic acid bacteria and unwanted microorganisms, included the enhanced release of peptides and free amino acids, which in turn led to higher viscoelastic moduli. The final model cheeses could be well discriminated, based on the impact of the various inocula considered upon the levels of organic acids. Conversely, proteolysis and viscoelastic properties appeared to be essentially independent of the initial microflora.info:eu-repo/semantics/publishedVersio

    Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission Line Strength

    Full text link
    Although the spectrum of a prototypical early-type galaxy is assumed to lack emission lines, a substantial fraction (likely as high as 30%) of nearby red sequence galaxy spectra contain emission lines with line ratios characteristic of low ionization nuclear emission-line regions (LINERs). We use spectra of ~6000 galaxies from the Sloan Digital Sky Survey (SDSS) in a narrow redshift slice (0.06 < z < 0.08) to compare the stellar populations of red sequence galaxies with and without LINER-like emission. The spectra are binned by internal velocity dispersion and by emission properties to produce high S/N stacked spectra. The recent stellar population models of R. Schiavon (2007) make it possible to measure ages, [Fe/H], and individual elemental abundance ratios [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for each of the stacked spectra. We find that red sequence galaxies with strong LINER-like emission are systematically 2-3.5 Gyr (10-40%) younger than their emission-free counterparts at the same velocity dispersion. This suggests a connection between the mechanism powering the emission (whether AGN, post-AGB stars, shocks, or cooling flows) and more recent star formation in the galaxy. We find that mean stellar age and [Fe/H] increase with velocity dispersion for all galaxies. Elemental abundance [Mg/Fe] increases modestly with velocity dispersion in agreement with previous results, and [C/Fe] and [N/Fe] increase more strongly with velocity dispersion than does [Mg/Fe]. [Ca/Fe] appears to be roughly solar for all galaxies. At fixed velocity dispersion, galaxies with fainter r-band luminosities have lower [Fe/H] and older ages but similar abundance ratios compared to brighter galaxies.Comment: 25 pages, 17 figures, Accepted for publication in ApJ as of 16 July 2007; acceptance status updated, paper unchange

    Effect of Al addition to Rapidly Solidified Mg-Cu-Rare Earth Alloys

    Get PDF
    Rapidly solidified Mg based alloys are of interest for industrial applications as a structural material and for hydrogen storage. Mg-Cu-Rare Earth alloys have shown high glass forming ability; full amorphous structure with thickness of mm size can be obtained within these systems. However, their brittle behavior limits their industrial applications. In the present work, the Al effect in substitution of Cu in the Mg65Cu25MM10 (at%, MM: mischmetal) was studied. Samples up to 15at% Al were prepared by splat cooling and their microstructure, stability and mechanical properties were characterised. The crystallization temperature increases with the Al addition; the amorphous phase with different Al content has a Young's modulus of ~55GPa; the microhardness increases with the Al content in the amorphous and crystallized samples and the fracture of the alloy containing 10at% Al showed ductile vein patterns characteristics of ductile metallic glasses. The partial Cu substitution by Al can improve the stability and mechanical properties of the amorphous Mg65Cu25MM10 allo

    Status of the Engineering Design of the IFMIF-DONES High Energy Beam Transport Line and Beam Dump System

    Get PDF
    IFMIF-DONES plant (In­ter­na­tional Fu­sion Ma­te­ri­als Ir­ra­di­a­tion Fa­cil­ity ’ DEMO Ori­ented Neu­tron Source) will be an in­stal­la­tion lo­cated in the south of Spain at Granada. Its ob­jec­tive is the fu­sion ma­te­r­ial test­ing by the gen­er­a­tion of a neu­tron flux with a broad en­ergy dis­tri­b­u­tion cov­er­ing the typ­i­cal neu­tron spec­trum of a (D-T) fu­sion re­ac­tor. This is achieved by the Li(d, xn) nu­clear re­ac­tions oc­cur­ring in a liq­uid lithium tar­get where a 40 MeV at 125 mA deuteron beam with a vari­able rec­tan­gu­lar beam foot­print be­tween 100mm x 50mm and 200mm x 50mm col­lides. The ac­cel­er­a­tor sys­tem is in charge of pro­vid­ing such high en­ergy deuterons in order to pro­duce the re­quired neu­tron flux. The High En­ergy Beam Trans­port line is the last sub­sys­tem of the IFMIF-DONES ac­cel­er­a­tor and its main func­tions are to guide the deuteron beam to­wards the liq­uid lithium tar­get and to shape it with the re­quired rec­tan­gu­lar ref­er­ence beam foot­print. The pre­sent work de­tails the sta­tus of the HEBT en­gi­neer­ing de­sign, in­clud­ing beam dy­nam­ics, vac­uum con­fig­u­ra­tion, ra­dio­pro­tec­tion, beam di­ag­nos­tics de­vices and re­mote han­dling analy­ses per­formed de­tail­ing the lay­out and in­te­gra­tion

    Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations

    Get PDF
    The appearance of "magic" heights of Pb islands grown on Cu(111) is studied by self-consistent electronic structure calculations. The Cu(111) substrate is modeled with a one-dimensional pseudopotential reproducing the essential features, i.e. the band gap and the work function, of the Cu band structure in the [111] direction. Pb islands are presented as stabilized jellium overlayers. The experimental eigenenergies of the quantum well states confined in the Pb overlayer are well reproduced. The total energy oscillates as a continuous function of the overlayer thickness reflecting the electronic shell structure. The energies for completed Pb monolayers show a modulated oscillatory pattern reminiscent of the super-shell structure of clusters and nanowires. The energy minima correlate remarkably well with the measured most probable heights of Pb islands. The proper modeling of the substrate is crucial to set the quantitative agreement.Comment: 4 pages, 4 figures. Submitte

    Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    Get PDF
    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections

    Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Full text link
    Studies of Galactic chemical and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. While most surveys use spectral synthesis, in this work we employ an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R~12,000). We have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices and, through the comparison of those with values calculated with pre-determined calibrations, derive the atmospheric parameters of the stars. The calibrations were built using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters from high-resolution spectroscopic analysis. Our approach was able to recover the parameters within 80 K for Teff, 0.05 dex for [Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical external uncertainties found between different high-resolution analyzes. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library and the literature atmospheric parameters were recovered within 125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show that the spectral indices are a competitive tool to characterize stars with the intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv standards regarding the number of character

    The GalMer database: Galaxy Mergers in the Virtual Observatory

    Full text link
    We present the GalMer database, a library of galaxy merger simulations, made available to users through tools compatible with the Virtual Observatory (VO) standards adapted specially for this theoretical database. To investigate the physics of galaxy formation through hierarchical merging, it is necessary to simulate galaxy interactions varying a large number of parameters: morphological types, mass ratios, orbital configurations, etc. On one side, these simulations have to be run in a cosmological context, able to provide a large number of galaxy pairs, with boundary conditions given by the large-scale simulations, on the other side the resolution has to be high enough at galaxy scales, to provide realistic physics. The GalMer database is a library of thousands simulations of galaxy mergers at moderate spatial resolution and it is a compromise between the diversity of initial conditions and the details of underlying physics. We provide all coordinates and data of simulated particles in FITS binary tables. The main advantages of the database are VO access interfaces and value-added services which allow users to compare the results of the simulations directly to observations: stellar population modelling, dust extinction, spectra, images, visualisation using dedicated VO tools. The GalMer value-added services can be used as virtual telescope producing broadband images, 1D spectra, 3D spectral datacubes, thus making our database oriented towards the usage by observers. We present several examples of the GalMer database scientific usage obtained from the analysis of simulations and modelling their stellar population properties, including: (1) studies of the star formation efficiency in interactions; (2) creation of old counter-rotating components; (3) reshaping metallicity profiles in elliptical galaxies; (4) orbital to internal angular momentum transfer; (5) reproducing observed colour bimodality of galaxies.Comment: 15 pages, 11 figures, 10 tables accepted to A&A. Visualisation of GalMer simulations, access to snapshot files and value-added tools described in the paper are available at http://galmer.obspm.fr
    corecore