897 research outputs found

    Reionization after Planck: the derived growth of the cosmic ionizing emissivity now matches the growth of the galaxy UV luminosity density

    Get PDF
    Thomson optical depth tau measurements from Planck provide new insights into the reionization of the universe. In pursuit of model-independent constraints on the properties of the ionising sources, we determine the empirical evolution of the cosmic ionizing emissivity. We use a simple two-parameter model to map out the evolution in the emissivity at z>~6 from the new Planck optical depth tau measurements, from the constraints provided by quasar absorption spectra and from the prevalence of Ly-alpha emission in z~7-8 galaxies. We find the redshift evolution in the emissivity dot{N}_{ion}(z) required by the observations to be d(log Nion)/dz=-0.15(-0.11)(+0.08), largely independent of the assumed clumping factor C_{HII} and entirely independent of the nature of the ionising sources. The trend in dot{N}_{ion}(z) is well-matched by the evolution of the galaxy UV-luminosity density (dlog_{10} rho_UV/dz=-0.11+/-0.04) to a magnitude limit >~-13 mag, suggesting that galaxies are the sources that drive the reionization of the universe. The role of galaxies is further strengthened by the conversion from the UV luminosity density rho_UV to dot(N)_{ion}(z) being possible for physically-plausible values of the escape fraction f_{esc}, the Lyman-continuum photon production efficiency xi_{ion}, and faint-end cut-off MlimM_{lim} to the luminosity function. Quasars/AGN appear to match neither the redshift evolution nor normalization of the ionizing emissivity. Based on the inferred evolution in the ionizing emissivity, we estimate that the z~10 UV-luminosity density is 8(-4)(+15)x lower than at $z~6, consistent with the observations. The present approach of contrasting the inferred evolution of the ionizing emissivity with that of the galaxy UV luminosity density adds to the growing observational evidence that faint, star-forming galaxies drive the reionization of the universe.Comment: 20 pages, 12 figures, 5 tables, Astrophysical Journal, updated to match version in press, Figure 6 shows the main result of the pape

    A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr

    Full text link
    Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ~ 8 galaxies that, together with reports of a gamma-ray burst at z ~ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ~ 7-8 galaxies suggest substantial star formation at z > 9-10. Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ~ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ~ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (~10%) at this time than it is just ~200 Myr later at z ~ 8. This demonstrates how rapid galaxy build-up was at z ~ 10, as galaxies increased in both luminosity density and volume density from z ~ 8 to z ~ 10. The 100-200 Myr before z ~ 10 is clearly a crucial phase in the assembly of the earliest galaxies.Comment: 41 pages, 14 figures, 2 tables, Nature, in pres

    The VLA-COSMOS Perspective on the IR-Radio Relation. I. New Constraints on Selection Biases and the Non-Evolution of the IR/Radio Properties of Star Forming and AGN Galaxies at Intermediate and High Redshift

    Get PDF
    VLA 1.4 GHz (rms noise ~0.012 mJy) and MIPS 24 and 70 micron (rms noise ~0.02 and ~1.7 mJy, respectively) observations covering the 2 square degree COSMOS field are combined with an extensive multi-wavelength data set to study the evolution of the IR-radio relation at intermediate and high redshift. With ~4500 sources -- of which ~30% have spectroscopic redshifts -- the current sample is significantly larger than previous ones used for the same purpose. Both monochromatic IR/radio flux ratios (q24 & q70), as well as the ratio of the total IR and the 1.4 GHz luminosity (qTIR) are used as indicators for the IR/radio properties of star forming galaxies and AGN. Using a sample jointly selected at IR and radio wavelengths in order to reduce selection biases, we provide firm support for previous findings that the IR-radio relation remains unchanged out to at least z~1.4. Moreover, based on data from ~150 objects we also find that the local relation likely still holds at 2.5<z<5. At redshift z<1.4 we observe that radio-quiet AGN populate the locus of the IR-radio relation in similar numbers as star forming sources. In our analysis we employ the methods of survival analysis in order to ensure a statistically sound treatment of flux limits arising from non-detections. We determine the observed shift in average IR/radio properties of IR- and radio- selected populations and show that it can reconcile apparently discrepant measurements presented in the literature. Finally, we also investigate variations of the IR/radio ratio with IR and radio luminosity and find that it hardly varies with IR luminosity but is a decreasing function of radio luminosity.Comment: 52 pages, 23 figures (11 at reduced resolution). Accepted for publication in ApJ

    Gas fraction and depletion time of massive star forming galaxies at z~3.2: no change in global star formation process out to z>3

    Get PDF
    The observed evolution of the gas fraction and its associated depletion time in main sequence (MS) galaxies provides insights on how star formation proceeds over cosmic time. We report ALMA detections of the rest-frame ∼300µm continuum observed at 240 GHz for 45 massive (hlog(M⋆(M⊙))i = 10.7), normal star forming (hlog(sSFR(yr−1 ))i = −8.6), i.e. MS, galaxies at z ≈ 3.2 in the COSMOS field. From an empirical calibration between cold neutral, i.e. molecular and atomic, gas mass Mgas and monochromatic (rest-frame) infrared luminosity, the gas mass for this sample is derived. Combined with stellar mass M⋆ and star formation rate (SFR) estimates (from MagPhys fits) we obtain a median gas fraction of µgas = Mgas/M⋆ = 1.65+0.18 −0.19 and a median gas depletion time tdepl.(Gyr) = Mgas/SFR = 0.68+0.07 −0.08; correction for the location on the MS will only slightly change the values. The reported uncertainties are the 1σ error on the median. Our results are fully consistent with the expected flattening of the redshift evolution from the 2-SFM (2 star formation mode) framework that empirically prescribes the evolution assuming a universal, log-linear relation between SFR and gas mass coupled to the redshift evolution of the specific star formation rate (sSFR) of main sequence galaxies. While tdepl. shows only a mild dependence on location within the MS, a clear trend of increasing µgas across the MS is observed (as known from previous studies). Further we comment on trends within the MS and (in)consistencies with other studies

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    The Build-Up of the Hubble Sequence in the COSMOS Field

    Get PDF
    We use ~8,600 >5e10 Msol COSMOS galaxies to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, bulge-less disks and irregular galaxies evolves from z=0.2 to z=1. The morphological evolution depends strongly on mass. At M>3e11 Msol, no evolution is detected in the morphological mix: ellipticals dominate since z=1, and the Hubble sequence has quantitatively settled down by this epoch. At the 1e11 Msol mass scale, little evolution is detected, which can be entirely explained with major mergers. Most of the morphological evolution from z=1 to z=0.2 takes place at masses 5e10 - 1e11 Msol, where: (i) The fraction of spirals substantially drops and the contribution of early-types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from ~10% at z=1 to >30% at z=0.2 (cf. the elliptical fraction grows from ~15% to ~20%). Thus, at these masses, transformations from late- to early-types result in disk-less elliptical morphologies with a statistical frequency of only 30% - 40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (ii) The bulge-less disk galaxies, which contribute ~15% to the intermediate-mass galaxy population at z=1, virtually disappear by z=0.2. The merger rate since z=1 is too low to account for the disappearance of these massive bulge-less disks, which most likely grow a bulge via secular evolution.Comment: 5 pages, 3 figures, submitted to ApJ
    corecore