3 research outputs found

    Simulation of high brightness tapered lasers

    Get PDF
    Tapered semiconductor lasers have demonstrated both high power and good beam quality, and are of primary interest for those applications demanding high brightness optical sources. The complex non-linear interaction between the optical field and the active material requires accurate numerical simulations to improve the device design and to understand the underlying physics. In this work we present results on the design and simulation of tapered lasers by means of a Quasi- 3D steady-state single-frequency model. The results are compared with experiments on Al-free active region devices emitting at 1060 nm. The performance of devices based on symmetric and asymmetric epitaxial designs is compared and the influence of the design on the beam properties is analyzed. The role of thermal effects on the beam properties is experimentally characterized and analyzed by means of the numerical simulations. Tapered lasers with separate electrical contacts in the straight and tapered sections, based on symmetrical and asymmetrical epitaxial designs are also presented and analyze

    Simulation of facet heating in high-power red lasers

    Get PDF
    A two-dimensional self-consistent laser model has been used for the simulation of the facet heating of red emitting AlGaInP lasers. It solves in the steady-state the complete semiconductor optoelectronic and thermal equations in the epitaxial and longitudinal directions and takes into account the population of different conduction band valleys. The model considers the possibility of two independent mechanisms contributing to the facet heating: recombination at surface traps and optical absorption at the facet. The simulation parameters have been calibrated by comparison with measurements of the temperature dependence of the threshold current and slope efficiency of broad-area lasers. Facet temperature has been measured by micro-Raman spectrometry in devices with standard and non absorbing mirrors evidencing an effective decrease of the facet heating due to the non absorbing mirrors. A good agreement between experimental values and calculations is obtained for both devices when a certain amount of surface traps and optical absorption is assumed. A simulation analysis of the effect of non absorbing mirrors in the reduction of facet heating in terms of temperature, carrier density, material gain and Shockly-Read-Hall recombination rate profiles is provided

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio
    corecore