74 research outputs found

    There’s more to Pradaxa’s problems than meets the eye

    Get PDF
    Pharmaceutical companies don’t have a particularly good reputation, for some very good reasons. But we can’t let suspicions about the motives of such companies cloud our assessments of drug safety because patients may also suffer. People with abnormal heart rhythms and other diseases that cause blood clots (thromboses) often require blood-thinning (anticoagulation) medications. For many decades, warfarin has been the most widely used such drug but it’s associated with a risk of bleeding (including fatal haemorrhage) and requires regular blood tests to monitor safety and efficacy. So the advent of new oral anticoagulant drugs was heralded as a major advance by both patients and clinicians – principally on the grounds that they appeared as effective as warfarin, may be associated with a lower risk of serious bleeding, and are cost-effective because patients don’t need ongoing blood monitoring. For these reasons, a number of these new drugs, including dabigatran (Pradaxa) and rivaroxaban (Xarelto) were fast-tracked through the regulatory approval processes in the United States and in New Zealand. Emerging problems But reports now suggest Pradaxa might be less safe than it appeared to be in clinical trials. Specifically, it’s claimed the drug may be responsible for higher-than-expected levels of abnormal bleeding, including hemorrhagic strokes, and that it may, in fact, be less safe than warfarin

    Taenia solium metacestode preparation in rural areas of sub-Saharan Africa: a source for diagnosis and research on cysticercosis

    Get PDF
    Background: Taenia solium metacestodes/cysts obtained from pig carcasses constitute a primary source for diagnostic tools used for the detection of human cysticercosis. Data on T. solium cyst preparation in Africa is still scarce but required to establish independent reference laboratories.Objectives: The aim of the present study is a) to present the likely yield of T. solium cyst material by the use of two different preparation methods in the field and b) to investigate its suitability for immunodiagnosis of human cysticercosis.Methods: In Zambia, Uganda and Tanzania 670 pigs were screened for T. solium infection. Cysts were prepared by `shaking method´ and ‘washing method’. Generated crude antigens were applied in a standard western blot assay.Results: 46 out of 670 pigs (6.9%) were found positive for T. solium  (Zambia: 12/367, 3.3%; Uganda: 11/217, 5.1%; Tanzania 23/86, 26.7%). Mean values of 77.7 ml whole cysts, 61.8 ml scolices/membranes and 10.9 ml cyst fluid were obtained per pig. Suitability of collected material for the use as crude antigen and molecular diagnostic techniques was demonstrated.Conclusion: This study clearly shows that T. solium cyst preparation in African settings by simple field methods constitutes an effective way to obtain high quality material as source for diagnostic tools and research purposes.Keywords: Taenia solium, cysticercosis, neurocysticercosis, antigen, immunoblo

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa

    Get PDF
    BACKGROUND : Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigencoding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS : The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS : Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.Additional file 1: Table S1. Cattle blood sample distribution across agroecological zones.Additional file 2: Table S2. Nucleotide and amino acid sequences of Tp1 and Tp2 antigen epitopes from T. parva Muguga reference sequence.Additional file 3: Table S3. Characteristics of 119 T. parva samples obtained from cattle in different agro-ecological zones (AEZs) of The Democratic Republic of Congo and Burundi.Additional file 4: Figure S1. Multiple sequence alignment of the 11 Tp1 gene alleles obtained in this study.Additional file 5: Table S4. Estimates of evolutionary divergence between gene alleles for Tp1 and Tp2, using proportion nucleotide distance.Additional file 6: Table S5. Tp1 and Tp2 genes alleles with their corresponding antigen variants.Additional file 7: Table S6. Amino acid variants of Tp1 and Tp2 CD8+ T cell target epitopes of T. parva from DRC and Burundi.Additional file 8: Figure S2. Multiple sequence alignment of the 10 Tp2 gene alleles obtained in this study.Additional file 9: Table S7. Distribution of Tp1 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 10: Table S8. Distribution of Tp2 gene alleles of T. parva from cattle and buffalo in the sub-Saharan region of Africa.Additional file 11: Figure S3. Neighbor-joining tree showing phylogenetic relationships among 48 Tp1 gene alleles described in Africa.Additional file 12: Figure S4. Phylogenetic tree showing the relationships among concatenated Tp1 and Tp2 nucleotide sequences of 93 T. parva samples from cattle in DRC and Burundi.This study is part of the PhD work supported by the University of Namur (UNamur, Belgium) through the UNamur-CERUNA institutional PhD grant awarded to GSA for bioinformatic analyses, interpretation of data and manuscript write up in Belgium. The laboratory aspects (molecular biology analysis) of the project were supported by the BecA-ILRI Hub through the Africa Biosciences Challenge Fund (ABCF) programme. The ABCF Programme is funded by the Australian Department for Foreign Affairs and Trade (DFAT) through the BecA-CSIRO partnership; the Syngenta Foundation for Sustainable Agriculture (SFSA); the Bill & Melinda Gates Foundation (BMGF); the UK Department for International Development (DFID); and the Swedish International Development Cooperation Agency (Sida). The ABCF Fellowship awarded to GAS was funded by BMGF grant (OPP1075938). Sample collection, field equipment and preliminary sample processing were supported through the “Theileria” project co-funded to the Université Evangélique en Afrique (UEA) by the Agence Universitaire de la Francophonie (AUF) and the Communauté Economique des Pays des Grands Lacs (CEPGL). The International Foundation for Science (IFS, Stockholm, Sweden) supported the individual scholarship awarded to GSA (grant no. IFS-92890CA3) for field work and part of field equipment to the “Theileria” project.http://www.parasitesandvectors.comam2020Veterinary Tropical Disease

    Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya

    Get PDF
    This study is a first attempt to quantify the non-photosynthetic vegetation (NPV) fraction at a semiarid grassland site located in Kenya. We have first applied a model already developed and calibrated for crop analysis to predict grassland NPV from field spectral reflectance data. The second step will be to refine the model and apply it to the PRISMA image to obtain a quantitative map

    Confirmed malaria cases among children under five with fever and history of fever in rural western Tanzania

    Get PDF
    The World Health Organization recommends that malaria treatment should begin with parasitological diagnosis. This will help to control misuse of anti-malarial drugs in areas with low transmission. The present study was conducted to assess the prevalence of parasitologically confirmed malaria among children under five years of age presenting with fever or history of fever in rural western Tanzania. A finger prick blood sample was obtained from each child, and thin and thick blood smears were prepared, stained with 10% Giemsa and examined under the light microscope. A structured questionnaire was used to collect each patient's demographic information, reasons for coming to the health center; and a physical examination was carried out on all patients. Fever was defined as axillary temperature ≥ 37.5°C. A total of 300 children with fever or a history of fever (1 or 2 weeks) were recruited, in which 54.3% (163/300, 95%CI, 48.7-59.9) were boys. A total of 76 (76/300, 25.3%, 95%CI, 22.8 - 27.8) of the children had fever. Based on a parasitological diagnosis of malaria, only 12% (36/300, 95%CI, 8.3-15.7) of the children had P. falciparum infection. Of the children with P. falciparum infection, 52.7% (19/36, 95%CI, 47.1-58.3) had fever and the remaining had no fever. The geometrical mean of the parasites was 708.62 (95%CI, 477.96-1050.62) parasites/μl and 25% (9/36, 95%CI, 10.9 -- 39.1) of the children with positive P. falciparum had ≥ 1001 parasites/μl. On Univariate (OR = 2.13, 95%CI, 1.02-4.43, P = 0.044) and multivariate (OR = 2.15, 95%CI, 1.03-4.49) analysis, only children above one year of age were associated with malaria infections. Only a small proportion of the children under the age of five with fever had malaria, and with a proportion of children having non-malaria fever. Improvement of malaria diagnostic and other causes of febrile illness may provide effective measure in management of febrile illness in malaria endemic areas

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region

    Get PDF
    Abstract Background The ixodid tick Rhipicephalus appendiculatus is the main vector of Theileria parva, wich causes the highly fatal cattle disease East Coast fever (ECF) in sub-Saharan Africa. Rhipicephalus appendiculatus populations differ in their ecology, diapause behaviour and vector competence. Thus, their expansion in new areas may change the genetic structure and consequently affect the vector-pathogen system and disease outcomes. In this study we investigated the genetic distribution of R. appendiculatus across agro-ecological zones (AEZs) in the African Great Lakes region to better understand the epidemiology of ECF and elucidate R. appendiculatus evolutionary history and biogeographical colonization in Africa. Methods Sequencing was performed on two mitochondrial genes (cox1 and 12S rRNA) of 218 ticks collected from cattle across six AEZs along an altitudinal gradient in the Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Phylogenetic relationships between tick populations were determined and evolutionary population dynamics models were assessed by mismach distribution. Results Population genetic analysis yielded 22 cox1 and 9 12S haplotypes in a total of 209 and 126 nucleotide sequences, respectively. Phylogenetic algorithms grouped these haplotypes for both genes into two major clades (lineages A and B). We observed significant genetic variation segregating the two lineages and low structure among populations with high degree of migration. The observed high gene flow indicates population admixture between AEZs. However, reduced number of migrants was observed between lowlands and highlands. Mismatch analysis detected a signature of rapid demographic and range expansion of lineage A. The star-like pattern of isolated and published haplotypes indicates that the two lineages evolve independently and have been subjected to expansion across Africa. Conclusions Two sympatric R. appendiculatus lineages occur in the Great Lakes region. Lineage A, the most diverse and ubiquitous, has experienced rapid population growth and range expansion in all AEZs probably through cattle movement, whereas lineage B, the less abundant, has probably established a founder population from recent colonization events and its occurrence decreases with altitude. These two lineages are sympatric in central and eastern Africa and allopatric in southern Africa. The observed colonization pattern may strongly affect the transmission system and may explain ECF endemic instability in the tick distribution fringes
    corecore