480 research outputs found

    IPSE, a parasite-derived host immunomodulatory protein, is a potential therapeutic for hemorrhagic cystitis

    Get PDF
    Chemotherapy-induced hemorrhagic cystitis is characterized by bladder pain and voiding dysfunction caused by hemorrhage and inflammation. Novel therapeutic options to treat hemorrhagic cystitis are needed. We previously reported that systemic administration of the Schistosomiasis haematobium-derived protein H-IPSEH06 (IL-4-inducing principle from Schistosoma mansoni eggs), is superior to 3 doses of MESNA in alleviating hemorrhagic cystitis. Based on prior reports by others on S. mansoni IPSE (M-IPSE) and additional work by our group, we reasoned that H-IPSE mediates its effects on hemorrhagic cystitis by binding IgE on basophils and inducing IL-4 expression, promoting urothelial proliferation, and translocating to the nucleus to modulate expression of genes implicated in relieving bladder dysfunction. We speculated that local bladder injection of the S. haematobium IPSE ortholog IPSEH03, hereafter called H-IPSEH03, might be more efficacious in preventing hemorrhagic cystitis compared to systemic administration of IPSEH06. We report that H-IPSEH03, like M-IPSE and H-IPSEH06, activates IgE-bearing basophils in an NFAT reporter assay, indicating activation of the cytokine pathway. Further, H-IPSEH03 attenuates ifosfamide-induced increases in bladder wet weight in an IL-4-dependent fashion. H-IPSEH03 relieves hemorrhagic cystitis-associated allodynia and modulates voiding patterns in mice. Finally, H-IPSEH03 drives increased urothelial cell proliferation suggesting that IPSE induces bladder repair mechanisms. Taken together, H-IPSEH03 may be a potential novel therapeutic to treat hemorrhagic cystitis by basophil activation, attenuation of allodynia and promotion of urothelial cell proliferation

    Therapeutic exploitation of IPSE, a urogenital parasite-derived host modulatory protein, for chemotherapy-induced hemorrhagic cystitis

    Get PDF
    Chemotherapy-induced hemorrhagic cystitis (CHC) can be difficult to manage. Prior work suggests IL-4 alleviates ifosfamide-induced hemorrhagic cystitis (IHC), but systemically administered IL-4 causes significant side effects. We hypothesized that the Schistosoma haematobium homolog of Interleukin-4-inducing principle from Schistosoma mansoni Eggs (H-IPSE), would reduce IHC and associated bladder pathology. IPSE binds IgE on basophils and mast cells, triggering IL-4 secretion by these cells. IPSE is also an “infiltrin”, translocating into the host nucleus to modulate gene transcription. Mice were administered IL-4, H-IPSE protein or its nuclear localization sequence (NLS) mutant with or without neutralizing anti-IL-4 antibody, or MESNA, followed by ifosfamide. Bladder tissue damage and hemoglobin content were measured. Spontaneous and evoked pain, urinary frequency and gene expression were assessed. Pain behaviors were interpreted in a blinded fashion. One dose of H-IPSE was superior to MESNA and IL-4 in suppressing bladder hemorrhage in an IL-4-and NLS-dependent fashion, and comparable to MESNA in dampening ifosfamide-triggered pain behaviors in an NLS-dependent manner. H-IPSE also accelerated urothelial repair following IHC. Our work represents the first therapeutic exploitation of a uropathogen-derived host modulatory molecule in a clinically relevant bladder disease model, and indicates that IPSE may be an alternative to MESNA for mitigating CHC

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis

    Get PDF
    Background Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted “infiltrin” protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE’s effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. Summary Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al

    Association of Moderate Coffee Intake with Self-Reported Diabetes among Urban Brazilians

    Get PDF
    Coffee has been associated with reductions in the risk of non-communicable chronic diseases (NCCD), including diabetes mellitus. Because differences in food habits are recognizable modifying factors in the epidemiology of diabetes, we studied the association of coffee consumption with type-2 diabetes in a sample of the adult population of the Federal District, Brazil. This cross-sectional study was conducted by telephone interview (n = 1,440). A multivariate analysis was run controlling for socio-behavioural variables, obesity and family antecedents of NCCD. A hierarchical linear regression model and a Poisson regression were used to verify association of type-2 diabetes and coffee intake. The independent variables which remained in the final model, following the hierarchical inclusion levels, were: first level—age and marital status; second level—diabetes and dyslipidaemias in antecedents; third level—cigarette smoking, supplement intake, body mass index; and fourth level—coffee intake (≀100 mL/d, 101 to 400 mL/day, and >400 mL/day). After adjusting hierarchically for the confounding variables, consumers of 100 to 400 mL of coffee/day had a 2.7% higher (p = 0.04) prevalence of not having diabetes than those who drank less than 100 mL of coffee/day. Compared to coffee intake of ≀100 mL/day, adults consuming >400 mL of coffee/day showed no statistically significant difference in the prevalence of diabetes. Thus, moderate coffee intake is favourably associated with self-reported type-2 diabetes in the studied population. This is the first study to show a relationship between coffee drinking and diabetes in a Brazilian population
    • 

    corecore