77 research outputs found

    Baseline and greenhouse-gas emissions in extensive livestock enterprises, with a case study of feeding lipid to beef cattle

    Get PDF
    For accurate calculation of reductions in greenhouse-gas (GHG) emissions, methodologies under the Australian Government's Carbon Farming Initiative (CFI) depend on a valid assessment of the baseline and project emissions. Life-cycle assessments (LCAs) clearly show that enteric methane emitted from the rumen of cattle and sheep is the major source of GHG emissions from livestock enterprises. Where a historic baseline for a CFI methodology for livestock is required, the use of simulated data for cow-calf enterprises at six sites in southern Australia demonstrated that a 5-year rolling emission average will provide an acceptable trade off in terms of accuracy and stability, but this is a much shorter time period than typically used for LCA. For many CFI livestock methodologies, comparative or pair-wise baselines are potentially more appropriate than historic baselines. A case study of lipid supplementation of beef cows over winter is presented. The case study of a control herd of 250 cows used a comparative baseline derived from simple data on livestock numbers and class of livestock to quantify the emission abatement. Compared with the control herd, lipid supplementation to cows over winter increased livestock productivity, total livestock production and enterprise GHG emissions from 990 t CO2-e to 1022 t CO2-e. Energy embodied in the supplement and extra diesel used in transporting the supplement diminished the enteric-methane abatement benefit of lipid supplementation. Reducing the cow herd to 238 cows maintained the level of livestock production of the control herd and reduced enterprise emissions to 938 t CO2-e, but was not cost effective under the assumptions of this case study

    Baseline and greenhouse-gas emissions in extensive livestock enterprises, with a case study of feeding lipid to beef cattle

    Get PDF
    For accurate calculation of reductions in greenhouse-gas (GHG) emissions, methodologies under the Australian Government's Carbon Farming Initiative (CFI) depend on a valid assessment of the baseline and project emissions. Life-cycle assessments (LCAs) clearly show that enteric methane emitted from the rumen of cattle and sheep is the major source of GHG emissions from livestock enterprises. Where a historic baseline for a CFI methodology for livestock is required, the use of simulated data for cow-calf enterprises at six sites in southern Australia demonstrated that a 5-year rolling emission average will provide an acceptable trade off in terms of accuracy and stability, but this is a much shorter time period than typically used for LCA. For many CFI livestock methodologies, comparative or pair-wise baselines are potentially more appropriate than historic baselines. A case study of lipid supplementation of beef cows over winter is presented. The case study of a control herd of 250 cows used a comparative baseline derived from simple data on livestock numbers and class of livestock to quantify the emission abatement. Compared with the control herd, lipid supplementation to cows over winter increased livestock productivity, total livestock production and enterprise GHG emissions from 990 t CO2-e to 1022 t CO2-e. Energy embodied in the supplement and extra diesel used in transporting the supplement diminished the enteric-methane abatement benefit of lipid supplementation. Reducing the cow herd to 238 cows maintained the level of livestock production of the control herd and reduced enterprise emissions to 938 t CO2-e, but was not cost effective under the assumptions of this case study

    Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Get PDF
    BACKGROUND: Elevated non-esterified fatty acids (NEFA) concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL), 105 and 135 days gestational age (dGA, term 147+/- 3 days). METHODS: The plasma concentrations of insulin, growth hormone (GH) and ovine placental lactogen (oPL) were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. RESULTS: Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC) profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p < 0.001 and P < 0.001, respectively). In hyperglycaemic clamp studies, while maintaining glucose levels not different from NPNL ewes, pregnant ewes displayed significantly reduced insulin responses and a maintained depressed insulin secretion. In NPNL ewes, 105 and 135 dGA ewes, the Glucose Infusion Rate (GIR) was constant at approximately 5.8 mg glucose/kg/min during the last 40 minutes of the hyperglycaemic clamp and the Mean Plasma Insulin Increment (MPII) was only significantly (p < 0.001) greater in NPNL ewes. Following the clamp, NEFA concentrations were reduced by approximately 60% of pre-clamp levels in all groups, though a blunted and suppressed insulin response was maintained in 105 and 135 dGA ewes. CONCLUSIONS: Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones of pregnancy and possibly NEFA metabolism, may act to maintain a reduced insulin output, thereby sparing glucose for non-insulin dependent placental uptake and ultimately, fetal requirements

    A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Get PDF
    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability

    The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections

    Get PDF
    Genetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep was artificially infected with Trichostrongylus colubriformis (n=3326) and then Haemonchus contortus (n=2669) to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50 BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were genotyped for the same SNP to assess the results obtained from the first population. We used principal components from the genomic relationship matrix among genotyped individuals to account for population stratification, and a novel approach to directly account for the sampling error associated with each SNP marker regression. The largest marker effects were estimated to explain an average of 0.48% (T. colubriformis) or 0.08% (H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other complex traits. We also demonstrated that methods which use all markers simultaneously can successfully predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of genomic predictions with breeding values of the industry sires reached a maximum of 0.32. We estimate that effective across-breed predictions of genetic merit with multi-breed populations will require an average marker spacing of approximately 10 kbp

    Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current investigation surveyed genetic polymorphism at the ovine <it>GDF8 </it>locus and determined its contribution to variation in muscling and fatness in sheep.</p> <p>Results</p> <p>Re-sequencing 2988 bp from a panel of 15 sires revealed a total of six SNP, none of which were located within exons of the gene. One of the identified SNP, <it>g+6723G>A</it>, is known to increase muscularity within the Belgian Texel. A genetic survey of 326 animals revealed that the mutation is near fixation within Australian Texels and present in additional breeds including White Suffolk, Poll Dorset and Lincoln. Using a resource population comprising 15 sires and 1191 half-sib progeny with genotypic data, the effect of this and other SNP was tested against a set of 50 traits describing growth, muscling, fatness, yield, meat and eating quality. The loss of function allele (<it>g+6723A</it>) showed significant effects on slaughter measurements of muscling and fatness. No effect was detected on objectively assessed meat quality however evidence was found for an association between <it>g+6723G>A</it>, decreased intramuscular fat and reduced eating quality. Haplotype analysis using flanking microsatellites was performed to search for evidence of currently unidentified mutations which might affect production traits. Four haplotypes were identified that do not carry <it>g+6723A </it>but which showed significant associations with muscling and fatness.</p> <p>Conclusion</p> <p>The finding that <it>g+6723G>A </it>is present within Australian sheep facilitated an independent evaluation into its phenotypic consequence. Testing was conducted using a separate genetic background and animals raised in different environments to the Belgian Texel in which it was first identified. The observation that the direction and size of effects for <it>g+6723A </it>is approximately consistent represented a robust validation of the effects of the mutation. Based on observed allele frequencies within breeds, selection for <it>g+6723A </it>will have the largest impact within the White Suffolk. <it>GDF8 </it>may harbour additional mutations which serve to influence economically important traits in sheep.</p

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations

    Selection Signatures in Worldwide Sheep Populations

    Get PDF
    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments

    Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep

    Get PDF
    Stefan Hiendleder is a member of the International Sheep Genomics ConsortiumIn sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.Michael P. Heaton, Theodore S. Kalbfleisch, Dustin T. Petrik, Barry Simpson, James W. Kijas, Michael L. Clawson, Carol G. Chitko-McKown, Gregory P. Harhay, Kreg A. Leymaster, the International Sheep Genomics Consortiu
    corecore