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Summary

Genetic resistance to gastrointestinal worms is a complex trait of great importance in both livestock and
humans. In order to gain insights into the genetic architecture of this trait, a mixed breed population of sheep
was artificially infected with Trichostrongylus colubriformis (n=3326) and thenHaemonchus contortus (n=2669)
to measure faecal worm egg count (WEC). The population was genotyped with the Illumina OvineSNP50
BeadChip and 48 640 single nucleotide polymorphism (SNP) markers passed the quality controls. An
independent population of 316 sires of mixed breeds with accurate estimated breeding values for WEC were
genotyped for the same SNP to assess the results obtained from the first population. We used principal
components from the genomic relationship matrix among genotyped individuals to account for population
stratification, and a novel approach to directly account for the sampling error associated with each SNP marker
regression. The largest marker effects were estimated to explain an average of 0.48% (T. colubriformis) or 0.08%
(H. contortus) of the phenotypic variance in WEC. These effects are small but consistent with results from other
complex traits. We also demonstrated that methods which use all markers simultaneously can successfully
predict genetic merit for resistance to worms, despite the small effects of individual markers. Correlations of
genomic predictions with breeding values of the industry sires reached a maximum of 0.32. We estimate that
effective across-breed predictions of genetic merit with multi-breed populations will require an average marker
spacing of approximately 10 kbp.

1. Introduction

Genetic variation in resistance to internal parasites
has been demonstrated in numerous species, including
humans and several livestock species (Kloosterman
et al., 1992; Quinnell, 2003; Bishop & Morris, 2007).
However, the genetic architecture underlying such
traits is poorly understood. Genetic architecture, that
is, the size and distribution of polymorphisms

affecting the trait, influences the success of association
studies and the ability to predict future phenotypes,
such as when predicting genetic risk to disease or when
selecting livestock for breeding (Wray et al., 2007;
Hayes et al., 2010). From an evolutionary perspective,
knowledge of the genetic architecture in disease traits
may help to elucidate the evolutionary influence of
disease on hosts (Dawkins & Krebs, 1979). Livestock
provide a suitable model for studying diseases (e.g.
Lanzas et al., 2010), particularly when (subclinical)
artificial infections are used to maximize the
expression of genetic difference between individuals
(Bishop & Woolliams, 2010).
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Studies of complex diseases, mostly in humans,
have generally failed to explain most of the known
genetic variation influencing the trait (Manolio et al.,
2009). These studies typically test each marker inde-
pendently for an association with the trait. The
expectation is that the variance explained by each
marker is proportional to the size of effect of the
(unobserved) polymorphism on the trait, the degree of
association between the marker and the polymor-
phism (i.e. the linkage disequilibrium (LD)) and the
experimental error associated with the measurement.
Attempts to increase the power of association studies
have focused either on increasing the number of
markers, and hence the likely LD between the marker
and the polymorphism, or increasing the number of
observations for a trait, thus reducing the relative size
of the experimental error. Few have attempted to
formally estimate the distribution of marker effects
with dense single nucleotide polymorphism (SNP)
markers (Hayes et al., 2010) and thus the required
power of experiments for disease traits, such as re-
sistance to worms, is still unknown. This study con-
ducts a genome-wide association study and uses
available information, including the LD between
makers and the expected magnitude of the exper-
imental error, to assess the power of this study to
detect polymorphisms.

A key motivation for genome-wide association
studies is to predict genetic risk to disease, either in
healthy human or livestock populations. Prediction of
aggregate genotype or genetic merit from markers
(Meuwissen et al., 2001) is distinct from association
studies because many markers are used for the
prediction. The methods of Meuwissen et al. (2001)
shrink the estimated effect of each marker and predict
genetic merit using a linear combination of their
effects. This process reduces the relative impact of
experimental error, compared with single-marker re-
gressions, because the expectation of the error over all
markers is zero. Predictions of genetic merit from all
markers are being implemented in livestock breeding
programmes, typically within a single breed or strain
of animals (Gonzalez-Recio et al., 2009; Hayes et al.,
2009; van Raden et al., 2009; Harris & Johnson,
2010).

In this study, a large mixed breed population
of sheep was artificially infected with gastrointestinal
worms to (1) investigate the genetic architecture
underlying resistance to worm infections and (2)
evaluate the feasibility of using molecular markers to
predict genetic merit for this trait. The DNA markers
used in this study were from the Illumina
OvineSNP50 BeadChip. Results from single marker
regressions were used for the genome-wide associ-
ation study, with significant markers validated in
a second (independent) population of sheep. We
assessed the power of the association study by

estimating the true distribution of the marker effects
using a novel technique to directly account for the
experimental error associated with the experiment.
The technique was verified by calculating the average
effect of significant markers in the validation popu-
lation and the consistency of the marker distributions
across the different phenotypes was also examined.
The final part of the study used all markers to predict
breeding values or additive genetic merit. The ref-
erence population was used to estimate the effects
of markers and the validation population was used
to assess the predictions made using the reference
population. The tested hypotheses were that (1) there
are many loci of small effect underlying faecal worm
egg count (WEC) and (2) WEC breeding values can be
predicted from genomic markers.

2. Materials and methods

(i) Reference population

(a) Population structure

Animals in the reference population were from 20
large half-sib families, produced via artificial insemi-
nation during 2005 and 2006 in the SheepGenomics
project (Supplementary Table S1 available at http://
journals.cambridge.org/grh). Sires were from six
different breeds, including some cross-bred animals,
and there were an average of 193 progeny per sire
(range: 87–388). Dams were used in both 2005 and
2006, but maternal pedigree was only collected for
2006 born animals. From the 2006 records, most
dams were Merino sheep (76%) and there were some
Merino cross Border Leicester (17%), White-Faced
Suffolk (3%) and Poll Dorset (2%) ewes. Merino
dams were predominantly from Strong and Medium
wool strains, although some were from Super-fine-
wool strains. The pedigree of the dam was not con-
sidered reliable and, as it was also incomplete, it was
not formally used in any of the analyses. Principal
components derived from progeny genotypes were
used to account for maternal pedigree (see below).

(b) Phenotypic records

Records for resistance to worms, both Trichostrong-
ylus colubriformis and Haemonchus contortus, and an
independent trait, bare breech area, were collected
from the reference population before 9 months of age
(Supplementary Fig. S1 available at http://journals.
cambridge.org/grh). Not all measurements were col-
lected on all animals. Bare breech area was assessed
before weaning, by measuring the dimensions of
the bare area under the tail of the animal with digital
callipers and calculating the area in cm2. There were
two measurements of bare area width, level with
the anus and vulva (an approximation in males), and
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one of dorso–ventral bare area depth. The area was
calculated as an approximate ellipse as:

Bare area=
p

8
(width at anus+width at vulva)

(dorso ventral length):

Body weight at the time of measurement was used
to account for different sizes of the lambs. It was
fitted in subsequent models as a covariate to ap-
proximate skin surface area, i.e. skin surfacey
weight0.67 (James, 2006). Thus, the bare area trait,
after analyses, was akin to bare area per unit of
skin area.

Host resistance to T. colubriformis andH. contortus
was assessed in lambs using WEC. Each animal was
challenged twice and, in each case, residual worm
burdens were removed 4–7 days before challenge with
a combined treatment of benzimidazole and levami-
sole. This product was known to be of high efficacy.
Animals were first challenged at about 5 months with
20 000 T. colubriformis larvae. The second challenge
was at about 8 months with 8000 H. contortus larvae
(see Supplementary Fig. S1 available at http://
journals.cambridge.org/grh). Two faecal samples
were collected for each challenge; 1 week apart at 3
and 4 (H. contortus) or 4 and 5 (T. colubriformis)
weeks post-challenge. The nematode eggs in faeces
were counted with a detection limit of 20 eggs per
gram. The identity of the technician conducting the
WEC was recorded. Some animals were not available
for challenge withH. contortus, and hence there was a
reduction in the number of animals and small change
in flock composition between the two challenges. All
animals included in the analyses had two measure-
ments of WEC.

(c) Genotypes

DNA was extracted from blood samples and geno-
typing was conducted by GeneSeek (Lincoln, USA).
The genotypes were quality checked and set to
missing if the call rate was <90%, if the minor allele
frequency was <1% or if the genotypes were not in
HardyxWeinberg equilibrium, i.e. observed geno-
type frequencies were inconsistent with observed
allele frequencies. Alleles were phased into paternal
and maternal haplotypes using a simple rules-
based approach and exploiting the large number of
progeny per sire. Sire genotypes were used during
phasing when available (15 sires) or otherwise im-
puted from progeny genotypes (5 sires). Within each
sire family, SNP parental origin was assigned when
unambiguous (e.g. for SNP where the sire was
heterozygous and the progeny homozygous). The
most likely phase for SNP adjacent to unambiguous
SNP in the sire was generally far more likely that

the alternate phase, because of dense SNP and large
half-sib families, and thus was assumed correct and
without error. Phase was inferred between adjacent
assigned SNP in the progeny when there was no
observed recombination between a pair of adjacent
assigned SNP, assuming no double-recombination
events. For SNP where a recombination was observed
between adjacent assigned SNP, the intervening SNP
haplotype was assumed unknown. Missing alleles
were imputed using fastPHASE (Scheet & Stephens,
2006). Positions of SNP markers were obtained
from the Sheep Genome browser V1.0 (http://www.
livestockgenomics.csiro.au/sheep/). The final dataset
comprised genotypes for 48 640 SNP markers on 3860
progeny.

(d) Accounting for population structure

The available pedigree information was inadequate to
account for the breed structure in the reference
population, particularly on the dam (female) side.
Accounting for population structure will reduce false-
positive associations due to population stratification
(Lander & Schork, 1994). Hence, the population
structure was inferred from the marker data using
principal components of the genomic relationship
matrix (Patterson et al., 2006). With our dataset, plots
of the data suggested that the first four components
would account for known structure. However, em-
pirical estimates of the number of false-positive as-
sociations were also made. The genomic relationship
matrix (G) was constructed by computing (modified
from Patterson et al., 2006) :

M(k, j)=
C(k, j)xm(j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(j)(1xp(j))

p ,

G=
1

2m
MMt,

where C(k, j) is the number of copies of the first allele
for marker j and individual k (i.e. 0, 1 or 2), m(j) is the
mean number of copies of the first allele per individual
at marker j in the population, p(j) is the allele fre-
quency (thus p(j)=m(j)/2) andm is the total number of
markers. The principal component decomposition
was conducted with R 2.6.1 (R Development Core
Team, 2007). For illustrative purposes, principal
components were also determined for the relationship
matrices built with only paternal or maternal haplo-
types.

(e) Descriptive analysis of the phenotypes

The heritability and repeatability of the traits were
estimated from the realized relationship between
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animals (Hayes & Goddard, 2008). The models fitted
were:

WEC=m+sirebreed+yr+yr=sex+yr=week

+date+grp+PC1+PC2+PC3+PC4

+PE+anim+e,

(1)

bare area=m+sirebreed+yr+yr=sex+wt0�67

+date+PC1+PC2+PC3+PC4

+anim+e,

(2)

where WEC is either square-root (T. colubriformis,
tWEC) or cube-root (H. contortus, hWEC) trans-
formed, m is the mean, sirebreed is the breed of sire,
yr is the year of measurement, yr/sex is the sex of the
animal nested within year, yr/week is the week of
measurement nested within year, date is the date of
measurement, grp is the technician measuring WEC,
PC1–PC4 are the first four principal components of
the genomic relationship matrix for the reference
population fitted as co-variates, PE is the permanent
environmental effect distributed PEyN(0, IsPE

2 ),
where I is the identity matrix, wt0.67 is a co-variate of
body weight (kg) approximating skin surface area,
anim is the animal effect distributed N(0, Gsanim

2 ),
where G is the genomic relationship matrix and e is
the residual error term. Transformations for WEC
were chosen so as to best normalize the residuals.

(ii) Validation population

Australian Sheep Breeding Values (ASBV) for post-
weaning strongyle WEC were obtained from Sheep
Genetics for 316 genotyped industry sires (Table 1, for
details see http://www.sheepgenetics.org.au). The in-
formation for these breeding values is derived from a
large number of progeny, such that the ASBV are
accurate predictors of true breeding values (TBV).
Sires were from Border Leicester, Terminal (White-
Faced Suffolk and Poll Dorset) and Merino breeds,
with Merino sheep further subdivided into wool types
(Ultrafine/Superfine, Fine/Medium-Fine, Medium/

Strong). ASBV are comparable only within Border
Leicester, Terminal or Merino sires. ASBV were
not available for bare breech area. Sire genotypes
were obtained, quality checked and missing genotypes
imputed, as described for the reference population.
Principal components from the genomic relationship
matrix (G) built with only industry sires were used to
correct for population stratification.

(iii) LD between markers

The extent of LD in a population is critical for the
prediction of genetic merit from markers and for
quantitative trait loci (QTL) detection (Goddard &
Hayes, 2009). LD between SNPmarker pairs less than
1r106 bp (1 Mbp) apart was quantified with the r2

statistic (Hill & Robertson, 1968), denoted rHR
2 , using

the maternal haplotypes from the reference popu-
lation. Paternal haplotypes were not included because
only 20 sires were used in the reference. LD was
first estimated across all progeny, and then for the
specific breeds represented in the maternal haplo-
types. Maternal breeds were assigned to progeny by
matching the clusters from the principal components
of the genomic relationship matrix to a breed
according to the recorded maternal pedigree (see
Supplementary Fig. S2 available at http://journals.
cambridge.org/grh). Progeny not tightly clustered
were discarded, leaving progeny representing Merino
(n=2689), Border Leicester cross Merino (n=820),
White-Faced Suffolk (n=122) and Poll Dorset
(n=153) maternal breeds. Bias in rHR

2 due to sample
size was adjusted by rHR

2 x1/N, where N is the breed
sample size (i.e. the number of haplotypes per breed).

(iv) Genome-wide association using SNP
marker regressions

(a) SNP regressions

Regressions of traits on SNP marker genotype were
fitted for the genome-wide association analysis and
to estimate the distribution of SNP marker effects.
Regressions were fitted, one at a time, using ASReml

Table 1. Number, breed and wool type of sires in the validation dataset. Shown are the mean, range and accuracy
of their Australian Sheep Breeding Values (ASBV) for post-weaning faecal worm egg count (WEC)

Breed or wool type
Border
Leicester Terminal

All
Merino
strains

Merino and Poll Merino strains

Ultrafine and
superfine

Fine and
medium-fine

Medium
and strong

Number 12 147 156 17 78 61
Mean 2.24 x2.46 x0.86 14.4 4.1 x11.4
Range x46, 40 x83, 95 x92, 153 x64, 113 x60, 153 x92, 88
Mean accuracy (%) 81 54 65 76 61 66
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(Gilmour et al., 2006). The models fitted to the refer-
ence population were:

WEC=m+sirebreed+yr+yr=sex+yr=week+date

+grp+PC1+PC2+PC3+PC4+ac

+PE+sire+e, (3)

bare area=m+sirebreed+yr+yr=sex+bwt0�67+date

+PC1+PC2+PC3+PC4+ac

+sire+e, (4)

where terms were as previously defined for models 1
and 2, sire is the random sire term distributed
N(0, Issire

2 ), where I is the identity matrix and ssire
2 is

the sire variance, a is the allele substitution effect and
c is the SNP genotype (i.e. 0, 1, 2 copies of the first
allele). Sire was fitted to minimize the effects of
population stratification and so the SNP marker ef-
fects were estimated within sire families. Thus, for a
SNP marker to have a large effect, it must be con-
sistent across sire families.

The regression of SNP markers for the validation
population was

ASBV=m+sirebreed+PC1val+PC2val+PC3val

+PC4val+ac+e,
(5)

where ASBV is the industry breeding value, m is the
mean, sirebreed is the sire breed (Border Leicester,
Terminal, Merino), PC1val to PC4val are the first four
principal components from the genomic relationship
matrix from the validation population, a is the allele
substitution effect, c is number of copies of the first
allele and e is the residual error.

(b) Identifying significant SNP markers

Marker associations were initially identified in the
reference population and then validated in the vali-
dation population. However, the significance thres-
holds (i.e. P-value) chosen for each stage of the
analysis is important for the outcomes. If stringent
thresholds are set then few validated associations will
be recorded. However, if the thresholds are too lax
then many false-positive associations are to be ex-
pected. In this dataset, very few SNP were significant
using P<0.0001 in the reference population (<20
SNP) and hence a threshold of P<0.001 was used.
A threshold of P<0.05 was used for the validation
population.

(c) The expected number of significant associations

The false discovery rate (FDR) is the ratio of expected
significant associations to the actual number of sig-
nificant associations. It assesses the Type I error
rate (Lynch & Walsh, 1998), and a low FDR means

that there are more significant associations than
expected by chance. FDR was calculated for the
reference population as FDRref=mP/S (Benjamini &
Hochberg, 1995), where m is the number of markers
tested, P is the significance threshold (P-value) and
S is the number of markers with significant associ-
ations. In the validation population, the calculation
was FDRval=SrefPval/Sval (Benjamini & Hochberg,
1995), where Sref and Sval are the number of markers
declared significant in the reference or validation
populations and Pval is the significance threshold in
the validation population.

(v) Estimating the true marker effects using the
validation population

(a) The average phenotypic variance explained by
a SNP marker (rSNP

2 )

The average phenotypic variance explained by an
SNP was calculated for SNP identified as significant
in the reference population. This was done using
the F-values obtained in the validation population,
as these estimates are not biased by the sampling
error associated with the discovery of the SNP. The
F-values for the SNP marker regressions obtained
from eqns (3) and (4) have the expectation:

E(F)=
s2
error+N[2p(1xp)a2]

s2
error

, (6)

where serror
2 is the error variance, N is the denomi-

nator degrees of freedom of the F-value and
2p(1xp)a2 is the variance explained by the marker
(where a is the allele substitution effect and p the
frequency of the allele). Rearranging, the average
proportion of phenotypic variance explained (per
SNP) by the n SNP markers is then:

r2SNP � 1

n
g
n

i=1

Fx1

N
, (7)

where N is the denominator degrees of freedom as-
sociated with the F-value and, assuming that the
variance explained by the SNP is small, using serror

2 as
an approximation for the phenotypic variance. The
total variance explained by the n markers (R2) is
nrSNP

2 .

(b) Permutation of WEC within sire families

The FDR assumes that under the null-hypothesis, the
test statistic in the reference population will follow an
F-distribution. However, MacLeod et al. (2010) show
that FDR may be higher than expected under the
null-hypothesis if population structure is not properly
accounted for. Thus, WECs were randomly shuffled
(permuted) within sire families 10 times to estimate
the expected number of false-positive associations.
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The rSNP
2 for significant SNP using the permuted data

was calculated using eqn (7).

(vi) Estimating the distribution of true marker effects
directly from the reference population

The estimated effect of each SNP contains a sampling
error and so the distribution of estimated effects is
not the same as the distribution of true effects. We
estimate the distribution of true effects as follows:

First, consider an SNP in many repetitions of this
experiment. The distribution of observed F-values
follows a non-central F-distribution with 1, N df,
whereN is the denominator degrees of freedom. Thus,
the distribution is

x21, l1
x2
N
=N

with non-centrality parameter
l1. Since xN

2 is approximately N when N is large, the
distribution of the F statistic is approximately x2

1, l1
with l1=N[2p(1xp)a2]/serror

2 (from eqn (6)). If
XyN(m,s2) then (X/s)2yx1,l

2 where l=(m/s)2.
Therefore, since F � x2

1, l1
then

ffiffiffiffiffiffiffiffiffiffi
F=N

p
� N(rSNP, 1=N)

when rSNP
2 is [2p(1xp)]a2/serror

2 . Assuming that
serror
2 approximates the phenotypic variance, then

rSNP
2 is the proportion of phenotypic variance ex-
plained by the SNP and rSNP is the absolute value
of the correlation between the phenotype and the
SNP genotype, where the genotype is coded 0, 1 or 2
according to the number of copies of one allele. The
variance of the distribution for the estimates (r̂SNP) is
equal to the sampling variance (1/N).

Now consider the F-values observed from
this experiment for the j SNP markers. Each

r̂SNP(j)yN(rSNP(j), 1/N), where rSNP(j) varies from one
SNP to another. Let us assume that rSNP(j) is a ran-
dom variable from a mixture of i normal distributions
with probability ri that it comes from N(0, vi), where
vi is the average variance explained by SNP from
the distribution, i.e. E(rSNP

2 )=v. Then, the observed
correlation, r̂SNP(j), would be from a mixture of nor-
mal distributions with the probability ri of coming
from N(0, vi+1/N).

An EM algorithm (Dempster et al., 1977; Lynch &
Walsh, 1998) was used to estimate the proportion of
SNP markers from each of the i normal distributions.
If the probability density function of drawing r̂SNP(j)

from N(0, vi+1/N) is

w( r̂SNP(j)ji)=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(vi+1=N)
p

r exp
r̂2SNP(j)

x2(vi+1=N)

� �
: (8)

The probability that r̂SNP(j) is from the normal distri-
bution i, conditional on the observed value of r̂SNP(j),
is then:

P( r̂SNP(j)ji)=
w( r̂SNP(j)ji)ri

Siw( r̂SNP(j)ji)ri

,

where ri is the current estimate for the proportion of
SNP from the ith normal distribution. Starting values
for ri were initially chosen and updated for each
iteration as:

rki=
1

m
g

j=1
P( r̂SNP(j)ji),

where m is the total number of SNP. Updating con-
tinued until the change in ri was very small, i.e. until
ri–rki<1r10x9. The variances for the normal dis-
tributions were 0, 0.0001, 0.0002, 0.0004, 0.0008 and
0.0012. These distributions were chosen to include the
full range of observed F-values.

The density function (eqn (8)) is influenced by
the sampling error (1/N) associated with each trait.
An example of the distribution used to model the
F-values from association study for WEC following
T. colubriformis infection (tWEC) are shown (Fig. 1).
Most notably, this shows that F-values of up to about
12 can be obtained due to experimental error even
when there is no true association between the marker
and the trait (i.e. v=0).

(vii) The power of detection using LD

The power of an experiment assesses the ability of an
experiment to reject the null-hypothesis when it is
false (Type II error rate ; Lynch &Walsh, 1998). Thus,
it may be thought of as assessing the repeatability of
the results. The power to detect polymorphisms using
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Fig. 1. The density function (eqn (8)) for modelling the
distribution of marker effects for WEC following T.
colubriformis challenge [denominator degrees of freedom
(N)=3294]. Shown are the distributions, with variance (vi)
equal to 0, 0.0001, 0.0002, 0.0004, 0.0008 and 0.0012, over
a range of correlations between the marker and trait
(|rSNP|). The corresponding F-values are shown.
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LD was calculated using the ‘ ldDesign’ package in R
2.6.1 (R Development Core Team, 2007; Luo, 1998;
Ball, 2005). The linkage equilibrium coefficient (D)
was calculated as [p(1xp)t(1xt)rHR

2 ]1/2, i.e. the
numerator from Hill & Robertson (1968), where p is
the frequency of the first allele at the marker, t is the
frequency of the first variant at the QTL or poly-
morphism and rHR

2 is the LD between the allele and
the QTL variant. The level of LD between the marker
allele and the QTL variant, and the effect size of the
QTL have the greatest impact on estimated power,
with the frequency of the marker allele and QTL
variant of lesser (relative) importance (Luo, 1998).
Only additive effects were assumed and the frequency
of the allele and variant were assumed to be 0.2.

(viii) Predicting genetic merit using genomic markers

Genomic estimated breeding values (GEBV) were
calculated for the validation population, using data
only from the reference population. GEBV were esti-
mated using two different methods, referred to as
GBLUP and BayesA (Meuwissen et al., 2001).

(a) Estimating GEBV using GBLUP

The GBLUP approach assumes that each SNP effect
comes from a normal distribution with equal vari-
ance. Goddard (2009) shows that, in practice, this can
be achieved by using the genomic relationship matrix
(G) to describe the relationship between all animals
(reference and validation populations) and taking the
animal solutions as GEBV. Hence, it is compu-
tationally efficient and similar to calculating BLUP
breeding values (e.g. Lynch & Walsh, 1998). The
model was fitted using ASReml (Gilmour et al.,
2006) as:

WEC=m+sirebreed+yr+yr=sex+yr=week+date

+grp+PC1+PC2+PC3+PC4+id

+sire+anim+e, ½9�

where the terms are as described previously. Note that
both the sire pedigree and the genomic relationship
matrix are fitted. This means that GEBV predictions
were made based on within-sire variation in WEC.

(b) Estimating marker effects using BayesA

The BayesA method assumes the SNP effects follow a
t-distribution, where there is a higher prior prob-
ability of effects that are moderate to large than with
the prior used for GBLUP. GEBV are then the linear
combination of SNP marker effects, GEBV=Xĝ,
where X is the design matrix of validation genotypes
and ĝ is the vector of estimated SNP effects. In prac-
tice, BayesA uses Gibbs sampling to estimate the

effect of an SNP conditional on the effect of all other
SNP. Sampling from the posterior is achieved by
sampling a variance from an inverted chi-square dis-
tribution and then sampling a normal deviate with
that variance. To implement BayesA, the hWEC and
tWEC traits were corrected for fixed and permanent
environmental effects as listed in model 4, excluding
the random sire term. A model was fitted to the solu-
tions for each animal as

y=Xg+Zv+e, (10)

where y is the vector of pre-corrected phenotypes,
X is a design matrix with dimension of nrj allocating
phenotypes to marker effects (n is the number of ani-
mals, j is the number of markers), g is a vector of
marker effects assumed to be normally distributed
uiyN(0, sui

2 ), Z is a design matrix allocating pheno-
types to breeding values, v is a vector of breeding
values associated with the sire with variance viy
N(0, Assire

2 ) (where A is the additive genetic relation-
ship matrix calculated from the sire for each animal)
and e is the vector of residual deviations distributed
eiyN(0,se

2). The prior used for sui
2 was inverse chi-

squared distribution as in Meuwissen et al. (2001).
The estimated effects (ĝ) were the posterior mean of
10 Gibbs sampling chains, each with either 30 000
(hWEC) or 50 000 (tWEC) iterations. More iterations
were used for tWEC to improve the correlation of
marker effects between replicates. The first 10 000
iterations were discarded as burn-in.

(c) Comparing GEBV predictions from GBLUP
and BayesA

Correlations (r) were estimated between GEBV and
ASBV, and between GEBV and the estimated TBV.
Defining the accuracy of ASBV as ASBVacc, then:

r(GEBV,TBV)=r(GEBV,ASBV)=ASBVacc:

The estimated proportion of genetic variance ex-
plained by the SNP markers is then r(GEBV,TBV)2.

(d) Using a subset of SNP markers

GEBV predicted from a subset of SNP markers were
used to assess the proportion of the genetic variation
that could be explained by a reduced number of
markers. Markers with the largest effects from the
model described in eqn (10) were included in the
analysis, progressively, for subsets of 50, 100, 250,
500, 1000, 1500, 2000, 3000, 5000 and 10 000 markers.
Effects were re-estimated for each subset of SNP using
the BayesA approach (eqn (10)) and five replicate
chains for each analysis. In each chain up to 20 000
iterations were used, with up to 5000 discarded as
burn-in.
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3. RESULTS

(i) Reference population phenotypes

The number of animals measured for worm resistance
and bare area varied between 2669 and 3616
(Table 2). For WEC following T. colubriformis chal-
lenge (tWEC) there were 18.5, 22.5 and 59% of re-
cords fromMaternal (Border Leicester, East Friesian,
Coopworth), Terminal (White-Faced Suffolk, Poll
Dorset) and Merino sires ; while for WEC following
challenge with H. contortus (hWEC) this composition
had changed to 16.0, 18.5 and 65.5%. WEC were
generally high and there were less than 3% of animals
with zero WEC. The repeatability of measurements
taken within a worm challenge was high (0.58–0.71).
All traits had low-to-moderate heritability (Table 2).
There were 2487 animals measured for both worm
resistance traits, and there was a moderate correlation
between the estimated breeding values obtained from
each analysis (0.32).

(ii) Population structure

Principal components clearly showed the breed struc-
ture of the reference population. When the genomic
relationship matrix was built with only paternal or
maternal haplotypes, there was evidence for clear
sire and maternal breed clusters (Supplementary
Fig. S2 available at http://journals.cambridge.org/
grh). Individual sires are very tightly clustered owing,
presumably, to the limited number of haplotypes
available from each sire. The maternal analysis shows
four clusters that are more loosely defined. Errors in
the recorded maternal pedigree are shown as indi-
viduals clustering with the incorrect maternal breed
(e.g. a blue or green dot in the red cluster of Merino
sheep). Principal components derived from the com-
plete genomic relationship matrix show the total
breed composition of the progeny (Fig. 2). From these
figures, and from exploration of further principal
components, it was determined that the first four
principal components should be sufficient to account
for the known population structure in subsequent

analysis. The genomic relationship matrix (Sup-
plementary Fig. S3 available at http://journals.
cambridge.org/grh) shows that the Merino sires were
only mated to Merino ewes, and that sires from
other breeds were mated to a mix of non-Merino
and Merino ewes. These plots highlight the necessity
of accounting for the maternal pedigree, which
was achieved by fitting the principal components as
co-variates in all models.

(iii) LD between markers

The LD between markers, assessed from maternal
haplotypes, was generally low in the population al-
though some marker pairs show high levels of LD at
longer distances (Fig. 3). The average marker spacing
between adjacent markers was about 54 kbp and the
mean rHR

2 at this distance was 0.11, across the whole
population. Higher LD was found for Poll Dorset and
White-Faced Suffolk breeds compared to Border
Leicester cross Merino or Merinos. The mean rHR

2 at
the average marker spacing was 0.12 for Merinos,
0.14 for Border Leicester cross Merino, 0.15 for
White-Faced Suffolk and 0.19 for Poll Dorset.

(iv) Genome-wide association study

(a) SNP markers associated with tWEC

There were 99 SNP markers identified as significant
(P<0.001, uncorrected for multiple testing) in the
reference population following T. colubriformis chal-
lenge and, of these SNP, 10 were identified as signifi-
cant in the validation population (P<0.05, Table 3).
The FDR was 49.1 and 49.5% for the reference
and validation population, respectively. This suggests
there would be ca. five real SNP with validated as-
sociations (i.e. 10 validated associationsr49.5%
FDR=4.9 false-positive SNP).

The direction of effect for the SNP markers in the
reference and the effect in the validation populations
is shown (Table 3). Although it is tempting to declare
SNP with inconsistent effects between the two popu-
lations as false positive, the LD phase may change

Table 2. Summary data for faecal worm egg count following T. colubriformis (tWEC) and H. contortus
(hWEC) challenge, and bare breech area in the reference population. Shown are the number of animals;
the range and mean of trait values; phenotypic (sphen

2 ), permanent environment (sPE
2 ) and animal relationship

(sanim
2 ) variance components ; and estimates of heritability (h2) and repeatability for each trait. Standard errors

are shown in parentheses

Trait n Min Mean Maximum sphen
2 sPE

2 sanim
2 h2 Repeatability

tWECa 3326 0.00 40.96 121.7 214.2 (4.58) 123.9 (4.58) 17.65 (5.52) 0.08 (0.03) 0.58 (0.01)
hWECa 2669 0.00 17.09 48.31 37.19 (1.04) 26.82 (1.04) 9.38 (2.64) 0.25 (0.04) 0.71 (0.01)
Bare area 3603 1.26 9.40 32.17 6.87 (0.19) na 2.09 (0.31) 0.30 (0.04) na

na=not applicable, only one measurement of bare breech area per animal.
a Data presented on the transformed scale, transformations were hWEC0.333 and tWEC0.5.
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between the reference and validation populations.
The estimated effects in Table 3 are also likely to be
overestimated because of the significance thresholds
applied during the SNP discovery process. An un-
biased approach to estimate the effect of significant
markers is discussed in detail below.

(b) SNP markers associated with hWEC

Fewer SNP were validated for the H. contortus
(hWEC) compared to the T. colubriformis challenge.
There were 65 significant associations in the reference
(P<0.001) and, of these SNP, five showed significant
effects in the validation population (P<0.05, Table 3).

The FDR were 74.8 and 65.0% in the reference and
validation population, respectively. Thus, there are
potentially two true SNP markers associated with
hWEC that meet our significance criteria in both
populations.

(v) Variation explained in the validation population
by markers identified as significant the
reference population

The 99 significant SNP markers identified following
T. colubriformis challenge explained an estimated
11% of the variance in WEC breeding value in the
validation population (Table 4). On average, each
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matrix. Each point represents an animal, and individuals
are coloured according to the breed of their sire. Sire
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SNP explained approximately 0.11% of the variance
in WEC. The number of SNP markers and the vari-
ance explained by these markers, either the average
per SNP or for all markers combined, was signifi-
cantly greater than SNP identified with permuted data
(Pf0.01). Random SNP from the null-distribution,
i.e. those identified with the permutations, explained a
small percentage of variance in the validation dataset.
This proportion was not significantly different from
zero but it may suggest a small bias in the analysis
because SNP identified with the permuted data did
not follow the assumed F-distribution. If F-values
from the SNP identified following permutation

followed the assumed F distribution, the variance ex-
plained should be close to zero (see eqn (7)). Thus, the
calculated FDR in the validation population might in
reality be greater than the calculated 49.5%.

The number of significant SNP markers following
the H. contortus challenge was significantly different
to significant SNP from permuted data (Pf0.01,
Table 4). However, the variance explained by these
SNP was not different to significant SNP identified
with permuted data. This suggests that most of the
SNP identified in the reference population using
hWEC probably had no true association with the
trait, which is consistent with the high FDR (74.8%)

Table 3. The number, name, chromosome (chr.) and chromosome position (base pairs, bp) of the validated
markers following T. colubriformis or H. contortus challenge in the reference population. The F-value and
either the direction of effect or effect in units of ASBV (for the validation with standard errors, S.E.) are shown
for each marker in the reference and validation populations

Marker no. Marker name chr.
Position
(bp)

Ref. population Validation population

F-value Effect F-value
Effecta

(ASBV)
S.E.
(ASBV)

T. colubriformis (tWEC)
1015 s70485.1 1 54 311 980 13.10 x 5.25 x6.66 2.91
8114 s17545.1 2 137 059 541 11.39 x 4.86 x7.81 3.54
15300 OAR4_2787164.1 4 2 787 164 15.52 x 5.33 6.86 2.97
16739 s59298.1 4 76 008 430 10.92 x 8.37 x8.39 2.90
19523 OAR5_95683754.1 5 95 683 754 12.44 x 6.20 x8.46 3.40
28308 OAR9_97761119.1 9 97 761 119 16.69 x 5.27 x6.71 2.92
32917 s49891.1 13 8 377 847 14.08 x 7.46 x7.47 2.73
36224 s17879.1 15 43 706 645 10.91 + 7.55 x10.01 3.65
42683 OAR20_23240800.1 20 23 240 800 26.73 + 5.92 x7.13 2.93
47930 OAR26_10981172.1 26 10 981 172 10.82 + 8.11 10.17 3.57

H. contortus (hWEC)
2059 OAR1_110170625.1 1 110 170 625 13.48 x 7.96 x9.28 3.29
2905 OAR1_157107505.1 1 157 107 505 13.68 + 4.72 6.82 3.14
3127 OAR1_169609478.1 1 169 609 478 16.00 x 3.93 x6.10 3.07
39010 s10680.1 17 33 408 930 11.30 + 9.35 8.77 2.87
40944 OAR18_65175223.1 18 65 175 223 12.57 + 8.11 7.82 2.75

a sP=34.57, standard deviation of the residual when the model contains all fixed effects from model 5, excluding the
marker term.

Table 4. Number of significant markers (no. of markers, P<0.001) and the average variance explained by a
single marker (rSNP

2 ) or all markers (R2) in the validation population for the actual and the (within-sire)
permutations of WEC. Traits are WEC following challenge with either T. colubriformis or H. contortus
(tWEC or hWEC). The standard error of the mean (S.E.M.) is shown in parentheses for the permuted data

No. of markers rSNP
2 (per marker, %) R2 (all markers, %)

T. colubriformis WEC
tWEC 99** 0.111** 11.0**
Permuted 51.2 (4.08) 0.049 (0.025) 3.25 (1.78)

H. contortus WEC
hWEC 65** 0.036 2.35
Permuted 50.8 (5.94) 0.084 (0.028) 4.73 (1.82)

** Significantly different from the permuted data, i.e. the null-distribution (Pf0.01, one-sided t-test).

K. E. Kemper et al. 212



in the reference population. The variance explained
(R2) in the validation population by permutated data
was significant greater than zero, suggesting that the
FDR for SNP validated for hWEC may be greater
than the assumed 65.0%.

(vi) Estimating the distribution of true marker effects
directly from the reference population

The estimated distribution of SNP effects is shown
(Table 5) for tWEC, hWEC and the third trait, bare
breech area. The EM technique estimates the pro-
portion of SNP from six normal distributions, each
with a successively larger variance, where the variance
of the distribution is the average true effect for the
SNP (vi or the average variance explained per SNP,
rSNP
2 ) plus the sampling error (1/N). The solutions for
all traits are similar and estimates that 66–73% of
SNP were not correlated with the traits. That is, most
of the SNP came from the normal distribution with
variance 1/N and where the average true marker effect
was zero (v=0), and thus the observed effect was due
to sampling error alone. There were an estimated
27–34% of SNP with very small correlations with
the traits, explaining an average of 0.01% of the
phenotypic variance per marker. For tWEC a small
proportion (0.00087) of markers explained a larger
amount of the phenotypic variance. However, the
effect of these SNP was still small and on average they
explained only 0.12% of the phenotypic variance per
marker.

The average variance explained by a SNP from a
particular distribution (rSNP

2 ) is equal to the variance
of the corresponding normal distribution. Thus the
markers from the normal distribution with the largest
variance for tWEC (v=0.0012) have an average
rSNP
2 of 0.12%. However, the SNP with the largest
effects from this distribution may explain up to 0.48%

of the variance (i.e. 2 standard deviations from the
mean, |rSNP|=0.069). Similarly, the average variance
explained by SNP coming from the distribution with
the largest variance for hWEC and bare breech
area was 0.02%, but the largest effects for SNP
from this distribution would explain about 0.08% of
the phenotypic variance. The results for the parasite
resistance traits are in broad agreement with the esti-
mated variance explained by significant SNP in the
validation population (Table 4), which showed that
SNP meeting our significance threshold explain an
average of 0.11 and 0.03% of the variance in ASBVs
for tWEC for hWEC, respectively.

The method to estimate the distribution of marker
effects does not account for the LD between markers,
and hence the variance due to one polymorphism may
be picked up by multiple SNP. To illustrate this point,
the average phenotypic variance explained by all SNP
is calculated (R2, Table 5). The total phenotypic vari-
ance explained by all markers was 160, 131 and 165%
for tWEC, hWEC and bare breech area. This over-
estimates the additive genetic variance by a minimum
of 20 times for tWEC and 5.5 times for hWEC and
bare breech area, assuming that SNP can explain all
the genetic variance from Table 2. The proportion of
markers showing small associations with each trait is
potentially the most distorted. For instance, markers
showing a small association with the trait may be in
weak LD with a polymorphism and so the variance
they explain is small. However, because many SNP
can be in low LD with a single polymorphism, the
effect of the polymorphism can be counted several
times.

The reconstructed mixture of normal distributions
shows that about 20% of SNP markers had weak
correlations with the traits (|rSNP|=0.005), and that
few SNP had correlations greater than 0.035 (Fig. 4).
However, there were slightly more SNP in the normal

Table 5. Proportion of markers (r), and the average phenotypic variance explained (R2)a by each of the i
normal distributions used to model SNP marker effects. The variance (vi) and standard deviation (vi

1/2) for each
distribution represent the mean variance explained (rSNP

2 ) and the mean correlation between a marker and
the trait (|rSNP|) for markers from the ith distribution. The traits are T. colubriformis and H. contortus faecal
WEC (tWEC and hWEC) and bare breech area.

Trait i 1 2 3 4 5 6
vi 0 0.0001 0.0002 0.0004 0.0008 0.0012
vi
1/2 0 0.01 0.014 0.02 0.028 0.035

tWEC r 0.68 0.32 1.0r10x6 0 0 8.7r10x4

R2 – 1.55 9.7r10x6 0 0 0.05

hWEC r 0.73 0.27 6.7r10x7 0 0 0
R2 – 1.31 6.5r10x6 0 0 0

Bare breech area r 0.66 0.34 3.6r10x7 0 0 0
R2 – 1.65 3.5r10x6 0 0 0

a The average variation explained by all markers in the distribution, R2=rir48 640rvi, where vi is the average variance
explained per marker and ri is the proportion of markers from the ith normal distribution.
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distribution with the largest variance for tWEC (i.e.
the distribution of effects has a slightly fatter tail).
There were fewer markers associated with hWEC
than with tWEC and for the markers associated with
hWEC, only weak correlations were estimated.

To assess the modelling of the marker effects, the
sampling error was added back to the variance for
each normal distribution (i.e. vi+1/N) and the mix-
ture of normal distributions was compared directly
with the observed correlations (Supplementary Fig. S4
available at http://journals.cambridge.org/grh).
Generally, the mixture described the observed distri-
bution of correlations well. Although there were some
discrepancies, there were few discernable trends.
Assessing only the tail of the distributions, the mix-
ture model may have overestimated the number of
larger correlations for hWEC and bare breech area
but appears to accurately describe the tail for tWEC.

(vii) Power of the genome-wide association study

Assuming an average LD between marker and QTL
of 0.2, this study had more than 70% power to detect
QTL explaining more than 2.5 or 3.2% of the
phenotypic variance in tWEC or hWEC (P<0.001,
Fig. 5a). In other words, the study should have de-
tected 70% of polymorphisms explaining more than
2.5 or 3.2% of the phenotypic variance. However,
the largest marker effects were estimated to explain
only 0.1–0.48% and 0.02–0.08% of the phenotypic
variance for tWEC and hWEC, respectively. This
study had less than a 4% chance of detecting these
SNP. If we assume a higher LD between the markers
and the polymorphisms, then the power of detection

increases. However, LD between adjacent markers
was low and therefore it is unlikely that the (maxi-
mum) LD between a marker and a polymorphism was
high. Even if we assume the LD between a marker and
polymorphism was 0.6, this study had 30% power to
detect the largest estimated effect explaining 0.48% of
the phenotypic variance. The chance of an indepen-
dent study (with similar power) to detect this same
SNP is only about 9% (i.e. 0.32=0.09).

Greater than 70% power to detect QTL explaining
0.1–0.48% of the phenotypic variance requires a
higher level of LD between markers and polymorph-
ism, and a greater number of observations. Increased
marker density or using a single breed with low
effective population size, such as Poll Dorset, would
increase the likely LD between markers and poly-
morphism. Reliable detection of polymorphism ex-
plaining about 0.5% of the phenotypic variance (e.g.
>70% power), could be achieved when the LD
between markers and QTL is 0.4 and with about
10 000 records (Fig. 5b). Detection of smaller poly-
morphisms, such as those estimated for hWEC,
would require greater marker density and many more
phenotypes.

(viii) Prediction of genetic merit

(a) Correlations between GEBV and ASBV

The prediction of genetic merit uses all markers sim-
ultaneously. Relative to the SNP marker regressions,
this reduces the impact of experimental error on re-
sults and assists in accounting for the LD between
markers. Of the two prediction methods BayesA had
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slightly better accuracy, although the differences be-
tween the methods were small (Table 6). The corre-
lation between GEBV and ASBV generally ranged
between 0.2 and 0.3, but there was little predictive
power in the Fine and Medium to Fine Merino Wool
types using any method. The correlation for Border
Leicester sires was not reliable due to the small
number of records in the validation population (not
shown). The proportion of the genetic variance ex-
plained by all markers was 35% for Terminal sires
using tWEC and 24% for Strong and Medium wool
Merinos using hWEC.

Markers with the largest effects, when all markers
were included in the analysis, were used to predict

GEBV from a reduced subset of markers using
BayesA (Supplementary Fig. S5 available at http://
journals.cambridge.org/grh). GEBV show that 10 000
markers can generally explain 80–90% of the genetic
variation explained by all markers. This was consist-
ent for Merino sires and for Terminal sires using
tWEC. The accuracy of GEBV reduced with the ad-
dition of more markers in some analyses, for example,
from 5000 to 10 000 markers for Terminal sires using
hWEC, and it is unclear as to why this occurred.
However, the correlations were generally not strong
and small changes could be magnified during the
calculation of the proportion of genetic variance ex-
plained [i.e. r(GEBV, TBV)2]. Results suggest that a
minimum of 3000 markers could explain 60–70%
of the genetic variation explained by all markers.
However, the accuracy of GEBV in general was low
to moderate and predictions with all markers should
be improved before attempting to use reduced subsets
of markers.

(ix) Comparing marker regressions to effects
estimated with BayesA

SNP regressions and BayesA analyses make subtly
different assumptions when estimating the marker ef-
fects. The SNP regressions assume that each SNP is
independent, although this not strictly true because
of the LD between markers. Conversely, BayesA
estimates the effect of each SNP after adjusting for the
effects of all other SNP. Thus, comparing results from
both analyses is of interest because the independence
of the SNP regressions can be assessed using results
from BayesA.

The 50 SNP with largest effects, as estimated by
BayesA, and the F-values from single-marker reg-
ressions were generally consistent (Supplementary
Fig. S6 available at http://journals.cambridge.org/
grh). Many of the markers with large F-values were
also estimated by BayesA to have large effects on the
traits. This is reasonable because sampling error as-
sociated with each marker is confounded between the
analyses, and there was low LD observed between
SNP markers greater than 100 kbp apart. SNP mar-
kers with large estimated effects from BayesA were
spread across most chromosomes for both tWEC and
hWEC. Notably, there were several SNP markers on
Chromosome 1 for tWEC with large F-values that
were also estimated by BayesA to have large (inde-
pendent) effects. Many of the SNP that were validated
in the genome-wide association study also had rela-
tively large effects estimated with BayesA.

4. DISCUSSION

The primary aim of this paper was to estimate the size
and distribution of SNP marker effects on a parasite
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Fig. 5. Linkage disequilibrium power for detection of
QTL with small effects. Shown is the power for the
number of current observations (n=3326) with increasing
LD (rHR

2 ) between markers and QTL (a), and the power
when rHR

2 =0.4 and the number of records is increased up
to 15 000 (b). Note the different scale on the x-axes. The
grey vertical line indicates the largest estimated marker
effect (i.e. 0.48% of phenotypic variance).
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resistance trait, namely WEC in sheep. Two ap-
proaches were used, which aimed to take account
of the sampling error associated with single-marker
regressions. The first estimated the proportion of
variation explained in the validation population by
significant SNP identified from the reference popu-
lation. The second approach modelled the distri-
bution of marker effects directly using a novel
technique that accounted for the sampling error as-
sociated with each estimate. The results from the two
approaches were in agreement. The largest effects
were estimated to explain between 0.12 and 0.48% of
the phenotypic variance for WEC following challenge
with T. colubriformis, and between 0.02 and 0.08%
of the phenotypic variance following H. contortus
challenge. The effect sizes are small but analysis of a
third trait, bare breech area, suggests that the results
are not specific to parasite resistance. The conclusion
is that there are many polymorphisms of small effect
underlying variation in WEC. This is potentially a
common architecture for many complex traits (e.g.
Hayes et al., 2010; Yang et al., 2010).

The distribution of marker effects has implications
for the findings of this genome-wide association
study, and other QTL detection studies in the litera-
ture. First, this experiment had little power to detect
SNP linked to causative mutations having the size of
the largest effects estimated (i.e. 0.48% of the pheno-
typic variance). Probably only a few of the most im-
portant markers associated with WEC following
T. colubriformis challenge were identified but it was
impossible to distinguish the true associations from
the false-positive results using these analyses. There
was less power for identifying markers associated with
WEC following the H. contortus challenge because of
the smaller estimated marker effects and the slightly

reduced number of observations for this trait. This
study had good power (>70%) to detect QTL ex-
plaining greater than 2.5–3.2% of the phenotypic
variance, but we did not convincingly identify any
markers with this magnitude of effect. This contrasts
to results from past linkage studies that have esti-
mated large (8% of the phenotypic variance; Davies
et al., 2006) and modest (0.19–0.36 phenotypic stan-
dard deviations, Marshall et al., 2009) QTL effects for
WEC. Differences between our estimates and those of
linkage studies can be partly attributed to the over-
estimation of effects in linkage studies (Xu, 2003) and
also to the possibility of multiple linked QTL con-
tributing to linkage peaks. Also we do not attempt to
quantify the reduction in marker effects due to in-
complete LD between markers and QTL (Goddard
et al., 2009; Yang et al., 2010). The difference between
the sizes of QTL effects when estimated from (within-
family) linkage or (across-population) genome-wide
association studies remains unresolved.

The distribution of marker effects and subsequent
lack of experimental power could explain, in part, the
inconsistencies between results for linkage analyses in
the literature (Dominik, 2005; Sayers & Sweeney,
2005; Bishop & Morris, 2007). Assuming that many
past experiments were underpowered to detect the
largest effects estimated here, the proportion of true
markers identified reduces and the results become
almost impossible to reproduce in (similarly under-
powered) subsequent experiments. A further issue is
that most past studies have relied on within-family
linkage to detect polymorphisms. Thus, replicating
results in a second family where the polymorphism is
not segregating is not possible. Polymorphisms may
not be segregating in families due to low allele fre-
quencies in the breed, or because the polymorphism is

Table 6. Correlation between genomic estimated breeding values and Australian Sheep Breeding Values
[r(GEBV, ASBV)] or the proportion of genetic variance explained [r(GEBV,TBV)2], for the Terminal or Merino
validation sires. Shown are the correlations when GEBV were estimated either with GBLUP or BayesA, following
challenge with either T. colubriformis (tWEC) or H. contortus (hWEC)

Analysis
Reference
trait

Terminal
breeds
(n=147)

All
Merino
strains
(n=156)

Merino and Poll Merino strains

Ultrafine
and
superfine
(n=17)

Fine and
medium
to fine
(n=78)

Medium
and
strong
(n=61)

r(GEBV, ASBV)
GBLUP tWEC 0.27 0.13 0.08 x0.07 0.19

hWEC 0.16 0.21 0.23 0.07 0.30
BayesA tWEC 0.32 0.19 0.17 x0.04 0.31

hWEC 0.22 0.26 0.28 0.08 0.32
r(GEBV, TBV)2

GBLUP tWEC 0.25 0.04 0.01 0.01 0.08
hWEC 0.09 0.10 0.09 0.01 0.21

BayesA tWEC 0.35 0.09 0.05 0 0.22
hWEC 0.17 0.16 0.14 0.02 0.24
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fixed in a particular breed of sheep. Replicating link-
age peaks caused by multiple linked QTL is also dif-
ficult because of changes to linkage phase between
families. Many authors have identified the Major
Histocompatibility Complex (MHC) complex and the
region containing the interferon gamma gene for re-
sistance to worms (Schwaiger et al., 1995; Outteridge
et al., 1996; Paterson et al., 1998; Coltman et al.,
2001; Patterson et al., 2001; Davies et al., 2006).
However, this study found no validated SNP in these
regions.

The results from our genome-wide association
study are in agreement with previously published
genome-wide association studies for other complex
traits. That is, markers that passed our significance
threshold in the reference population explained only a
small proportion (11.0 and 2.3%) of the genetic vari-
ation in an independent population. There are two
likely explanations for this result. First, the variance
explained by an individual marker is small and, be-
cause many markers were tested for associations with
the trait, stringent significance thresholds are applied
(Goddard et al., 2009). Yang et al. (2010) recently
demonstrated that these thresholds also exclude many
markers, each of which only explains only a small
proportion of the genetic variation. Thus, even if the
power of this experiment was sufficient to detect the
largest marker effects, probably most of the genetic
variation would still be unexplained. In addition, this
study searched for what may be considered old poly-
morphisms because we constrained the effect of SNP
genotype to be consistent across different breeds of
sheep. Such polymorphisms are likely to have small
effects because any polymorphisms with a large effect
on resistance to worms are expected to be removed
due to purifying selection (Kimura, 1985). The second
cause may be due to incomplete LD between the
markers and the causative mutations (Goddard et al.,
2009; Yang et al., 2010). This has the effect of reduc-
ing the variance explained by a marker, particularly
if the minor allele frequency of the polymorphism is
lower than the genotyped SNP.

This paper used genomic markers to predict genetic
merit for resistance to worm infections. We demon-
strated that an approach that uses single (or a limited
number of) markers is impractical for predicting
genetic merit, primarily because of the small pro-
portion of genetic variance explained by single
markers. When all markers were used, we explained a
moderate proportion of the genetic variance in the
trait. However, improvements are still necessary and
previous research in dairy cattle shows clearly how the
accuracies of genomic predictions can be increased.
The first step is to increase the size of the reference
population. Deterministic predictions indicate a
steady, almost linear, increase in GEBV accuracy if
up to 20 000 extra records were added to this reference

dataset (Goddard & Hayes, 2009). The rate of in-
crease is conditional on the heritability of the trait and
thus artificial challenges for the reference population
may still be required to maximize exposure to infec-
tion and the potential heritability for WEC (Bishop &
Woolliams, 2010), at least under Australian condi-
tions. The next step is to increase the potential LD
between markers and polymorphisms by increasing
the density of SNP markers. Low LD between mar-
kers in breeds such as Merinos suggests that the value
of increasing the size of the reference population will
be limited unless the density of markers is increased.
For example, Calus et al. (2008) estimate that GEBV
can reach accuracies of 60–80% when the level of LD
between marker alleles (rHR

2 ) is greater than 0.2. In
contrast to the Merino breed, accuracies will increase
most rapidly with additional records in breeds with
higher LD between markers, such as Poll Dorset,
because of their lower effective population size (Hayes
et al., 2003; Goddard & Hayes, 2009). Predictions
of genetic merit using the current density of markers
would be maximized by restricting predictions and
concentrating the reference population on a single
breed.

Accurate prediction of genetic merit across breeds
requires an increased density of markers. If denser
markers were available then cross-bred populations,
such as those in the current study, could be used more
effectively to predict genetic merit. For example,
Toosi et al. (2010) show that mixed breed populations
can predict GEBV without a large loss in accuracy
provided that (i) all constituent breeds are represented
in the reference population and (ii) the marker density
is sufficiently high for the marker-polymorphism as-
sociations to persist across breeds. To achieve an LD
betweenmarker alleles of greater than 0.2 (Calus et al.,
2008), data from the current study suggest that an
average marker spacing of approximately 10 kbp is
required (Fig. 3). This is about five times the current
density of SNP markers, i.e. about 250 000 SNP in
total. de Roos et al. (2008) found a similar density for
effective across-breed Bos taurus GEBV predictions
and estimated an average required spacing of about
12 kbp. The sheep breeds in this study have the
advantage of being mostly of European origin (Kijas
et al., 2009), which reduces their (across-breed) ef-
fective population size compared to more distantly
related sheep breeds.

In conclusion, we used a mixed breed population of
sheep to show that the detectable polymorphisms af-
fecting resistance to worm infections have relatively
small effects. We showed that the distribution of
effects was consistent between worm species and with
another trait not obviously associated with disease.
Considering that the additive genetic effects for WEC
accounted for between 10 and 24% of the phenotypic
variance in this population, this means that there are
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likely to be hundreds or thousands of underlying
mutations influencing these phenotypes. These muta-
tions are probably spread across the genome. We used
a novel approach to demonstrate how sampling error
may bias the estimated effect size of SNP marker ef-
fects and subsequently showed that our experiment
was underpowered to detect SNP with small effects
we estimated. Any true markers that we identified
are likely to be only a subset of the larger number
of polymorphisms affecting resistance to worms.
When all markers were used to predict genetic merit
we were able to capture a larger proportion of the
genetic variation compared to single marker regres-
sions. Other livestock industries have already im-
plemented techniques that use all makers to predict
genetic merit and the research in these industries
provides a good basis for future recommendations in
sheep.
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