139 research outputs found

    Galileo early cruise, including Venus, first Earth, and Gaspra encounters

    Get PDF
    This article documents Deep Space Network (DSN) support for the Galileo cruise to Jupiter. The unique trajectory affords multiple encounters during this cruise phase. Each encounter had or will have unique requirements for data acquisition and DSN support configurations. An overview of the cruise and encounters through the asteroid Gaspra encounter is provided

    Analysis of debris from APG-3, the simulated destruct system test of a full-scale Rover/NERVA reactor

    Get PDF
    Analysis of debris from simulated destruction system test of full scale Rover/NERVA reacto

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM

    1D Frustrated Ferromagnetic Model with Added Dzyaloshinskii-Moriya Interaction

    Full text link
    The one-dimensional (1D) isotropic frustrated ferromagnetic spin-1/2 model is considered. Classical and quantum effects of adding a Dzyaloshinskii-Moriya (DM) interaction on the ground state of the system is studied using the analytical cluster method and numerical Lanczos technique. Cluster method results, show that the classical ground state magnetic phase diagram consists of only one single phase: "chiral". The quantum corrections are determined by means of the Lanczos method and a rich quantum phase diagram including the gapless Luttinger liquid, the gapped chiral and dimer orders is obtained. Moreover, next nearest neighbors will be entangled by increasing DM interaction and for open chains, end-spins are entangled which shows the long distance entanglement (LDE) feature that can be controlled by DM interaction.Comment: 8 pages, 9 figure

    IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    Get PDF
    Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemoresistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood.Methods: Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated.Results: The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death.Conclusion: The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death

    Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds

    Full text link
    Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/1/evo13309-sup-0003-figureS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/2/evo13309.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/3/evo13309-sup-0006-figureS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/4/evo13309_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/5/evo13309-sup-0009-figureS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/6/evo13309-sup-0005-figureS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/7/evo13309-sup-0004-figureS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/8/evo13309-sup-0002-figureS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/9/evo13309-sup-0008-figureS8.pd

    Adenoviral Vector Driven by a Minimal Rad51 Promoter Is Selective for p53-Deficient Tumor Cells

    Get PDF
    Background: The full length Rad51 promoter is highly active in cancer cells but not in normal cells. We therefore set out to assess whether we could confer this tumor-selectivity to an adenovirus vector. Methodology/Principal Findings: Expression of an adenovirally-vectored luciferase reporter gene from the Rad51 promoter was up to 50 fold higher in cancer cells than in normal cells. Further evaluations of a panel of truncated promoter mutants identified a 447 bp minimal core promoter element that retained the full tumor selectivity and transcriptional activity of the original promoter, in the context of an adenovirus vector. This core Rad51 promoter was highly active in cancer cells that lack functional p53, but less active in normal cells and in cancer cell lines with intact p53 function. Exogenous expression of p53 in a p53 null cell line strongly suppressed activity of the Rad51 core promoter, underscoring the selectivity of this promoter for p53-deficient cells. Follow-up experiments showed that the p53-dependent suppression of the Rad51 core promoter was mediated via an indirect, p300 coactivator dependent mechanism. Finally, transduction of target cells with an adenovirus vector encoding the thymidine kinase gene under transcriptional control of the Rad51 core promoter resulted in efficient killing of p53 defective cancer cells, but not of normal cells, upon addition of ganciclovir. Conclusions/Significance: Overall, these experiments demonstrated that a small core domain of the Rad51 promoter ca

    PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation.

    Get PDF
    OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240

    Exercise and functional foods

    Get PDF
    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise
    corecore