484 research outputs found

    Hallazgo de anémonas anillo (Anthozoa, Actiniaria) en la región de Azores

    Get PDF
    Not availableNo disponibl

    Thermal Conductivity Tensor in YBa2_2Cu3_3O7x_{7-x}: Effects of a Planar Magnetic Field

    Full text link
    We have measured the thermal conductivity tensor of a twinned YBa2_2Cu3_3O7x_{7-x} single crystal as a function of angle θ\theta between the magnetic field applied parallel to the CuO2_2 planes and the heat current direction, at different magnetic fields and at T=13.8 K. Clear fourfold and twofold variations in the field-angle dependence of κxx\kappa_{xx} and κxy\kappa_{xy} were respectively recorded in accordance with the d-wave pairing symmetry of the order parameter. The oscillation amplitude of the transverse thermal conductivity κxy0\kappa^0_{xy} was found to be larger than the longitudinal one κxx0\kappa^0_{xx} in the range of magnetic field studied here (0T0 T B9 \le B \le 9 TT). From our data we obtain quantities that are free from non-electronic contributions and they allow us a comparison of the experimental results with current models for the quasiparticle transport in the mixed state.Comment: 9 Figures, Phys. Rev. B(in press

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Small particle-size talc is associated with poor outcome and increased inflammation in thoracoscopic pleurodesis

    Get PDF
    Rationale: Talc is very effective for pleurodesis, but there is concern about complications, especially acute respiratory distress syndrome. Objectives: It was the aim of this study to investigate if talc with a high concentration of small particles induces greater production of cytokines, and if pleural tumor burden has any influence on the local production and spillover of cytokines to the systemic circulation and eventual complications. Methods: We investigated 227 consecutive patients with malignant effusion submitted to talc pleurodesis. One hundred and three patients received 'small-particle talc' (ST; containing about 50% particles <10 ¿m) and 124 received 'large-particle talc' (with <20% particles <10 ¿m). Serial samples of both pleural fluid and blood were taken before and 3, 24, 48 and 72 h after thoracoscopy. Also, mesothelial cells were stimulated with both types of talc in vitro. Measurements and Results: Interleukin-8, tumor necrosis factor-¿, vascular endothelial growth factor, basic fibroblast growth factor and thrombin-antithrombin complex were measured in all samples. Early death (<7 days after talc) occurred in 8 of 103 patients in the ST and in 1 of 124 in the 'large-particle talc' group (p = 0.007). Patients who received ST had significantly higher proinflammatory cytokines in pleural fluid and serum after talc application, and also in supernatants of the in vitro study. Pleural tumor burden correlated positively with proinflammatory cytokines in serum, suggesting that advanced tumor states induce stronger systemic reactions after talc application. Conclusions: ST provokes a strong inflammatory reaction in both pleural space and serum, which is associated with a higher rate of early deaths observed in patients receiving it. Copyright © 2012 S. Karger AG, Basel.Peer Reviewe

    Vision-Based Traffic Data Collection Sensor for Automotive Applications

    Get PDF
    This paper presents a complete vision sensor onboard a moving vehicle which collects the traffic data in its local area in daytime conditions. The sensor comprises a rear looking and a forward looking camera. Thus, a representative description of the traffic conditions in the local area of the host vehicle can be computed. The proposed sensor detects the number of vehicles (traffic load), their relative positions and their relative velocities in a four-stage process: lane detection, candidates selection, vehicles classification and tracking. Absolute velocities (average road speed) and global positioning are obtained after combining the outputs provided by the vision sensor with the data supplied by the CAN Bus and a GPS sensor. The presented experiments are promising in terms of detection performance and accuracy in order to be validated for applications in the context of the automotive industry

    Metal coordination and peripheral substitution modulate the activity of cyclic tetrapyrroles on αS aggregation: A structural and cell-based study.

    Get PDF
    The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interactions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyrrolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modulation exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein

    Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies

    Get PDF
    Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed
    corecore