4,436 research outputs found
An Improved Private Mechanism for Small Databases
We study the problem of answering a workload of linear queries ,
on a database of size at most drawn from a universe
under the constraint of (approximate) differential privacy.
Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for
any given and , answers the queries with average error that is
at most a factor polynomial in and
worse than the best possible. Here we improve on this guarantee and give a
mechanism whose competitiveness ratio is at most polynomial in and
, and has no dependence on . Our mechanism
is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in
place of an ad-hoc noise distribution, we use a distribution which is in a
sense optimal for the projection mechanism, and analyze it using convex duality
and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track
Methods for approximating stochastic evolutionary dynamics on graphs
Population structure can have a significant effect on evolution. For some systems with sufficient symmetry, analytic results can be derived within the mathematical framework of evolutionary graph theory which relate to the outcome of the evolutionary process. However, for more complicated heterogeneous structures, computationally intensive methods are required such as individual-based stochastic simulations. By adapting methods from statistical physics, including moment closure techniques, we first show how to derive existing homogenised pair approximation models and the exact neutral drift model. We then develop node-level approximations to stochastic evolutionary processes on arbitrarily complex structured populations represented by finite graphs, which can capture the different dynamics for individual nodes in the population. Using these approximations, we evaluate the fixation probability of invading mutants for given initial conditions, where the dynamics follow standard evolutionary processes such as the invasion process. Comparisons with the output of stochastic simulations reveal the effectiveness of our approximations in describing the stochastic processes and in predicting the probability of fixation of mutants on a wide range of graphs. Construction of these models facilitates a systematic analysis and is valuable for a greater understanding of the influence of population structure on evolutionary processes
On the action potential as a propagating density pulse and the role of anesthetics
The Hodgkin-Huxley model of nerve pulse propagation relies on ion currents
through specific resistors called ion channels. We discuss a number of
classical thermodynamic findings on nerves that are not contained in this
classical theory. Particularly striking is the finding of reversible heat
changes, thickness and phase changes of the membrane during the action
potential. Data on various nerves rather suggest that a reversible density
pulse accompanies the action potential of nerves. Here, we attempted to explain
these phenomena by propagating solitons that depend on the presence of
cooperative phase transitions in the nerve membrane. These transitions are,
however, strongly influenced by the presence of anesthetics. Therefore, the
thermodynamic theory of nerve pulses suggests a explanation for the famous
Meyer-Overton rule that states that the critical anesthetic dose is linearly
related to the solubility of the drug in the membranes.Comment: 13 pages, 8 figure
The Evolution of X-ray Bursts in the "Bursting Pulsar" GRO J1744-28
GRO J1744-28, commonly known as the `Bursting Pulsar', is a low mass X-ray
binary containing a neutron star and an evolved giant star. This system,
together with the Rapid Burster (MXB 1730-33), are the only two systems that
display the so-called Type II X-ray bursts. These type of bursts, which last
for 10s of seconds, are thought to be caused by viscous instabilities in the
disk; however the Type II bursts seen in GRO J1744-28 are qualitatively very
different from those seen in the archetypal Type II bursting source the Rapid
Burster. To understand these differences and to create a framework for future
study, we perform a study of all X-ray observations of all 3 known outbursts of
the Bursting Pulsar which contained Type II bursts, including a population
study of all Type II X-ray bursts seen by RXTE. We find that the bursts from
this source are best described in four distinct phenomena or `classes' and that
the characteristics of the bursts evolve in a predictable way. We compare our
results with what is known for the Rapid Burster and put out results in the
context of models that try to explain this phenomena.Comment: Accepted to MNRAS Aug 17 201
TarO : a target optimisation system for structural biology
This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) Structural Proteomics of Rational Targets (SPoRT) initiative, (Grant BBS/B/14434). Funding to pay the Open Access publication charges for this article was provided by BBSRC.TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC Structural Proteomics of Rational Targets initiative.Publisher PDFPeer reviewe
Altered visual processing in a rodent model of Attention-Deficit Hyperactivity Disorder
A central component of Attention-Deficit Hyperactivity Disorder (ADHD) is increased distractibility, which is linked to the superior colliculus (SC) in a range of species, including humans. Furthermore, there is now mounting evidence of altered collicular functioning in ADHD and it is proposed that a hyper-responsive SC could mediate the main symptoms of ADHD, including distractibility. In the present study we have provided a systematic characterization of the SC in the most commonly used and well-validated animal model of ADHD, the spontaneously hypertensive rat (SHR). We examined collicular-dependent orienting behavior, local field potential (LFP) and multiunit responses to visual stimuli in the anesthetized rat and morphological measures in the SHR in comparison to the Wistar Kyoto (WKY) and Wistar (WIS). We found that SHRs remain responsive to a repeated visual stimulus for more presentations than control strains and have a longer response duration. In addition, LFP and multiunit activity within the visually responsive superficial layers of the SC showed the SHR to have a hyper-responsive SC relative to control strains, which could not be explained by altered functioning of the retinocollicular pathway. Finally, examination of collicular volume, neuron and glia densities and glia:neuron ratio revealed that the SHR had a reduced ratio relative to the WKY which could explain the increased responsiveness. In conclusion, this study demonstrates strain-specific changes in the functioning and structure of the SC in the SHR, providing convergent evidence that the SC might be dysfunctional in ADHD
The design and performance of an improved target for MICE
The linear motor driving the target for the Muon Ionisation Cooling Experiment has been redesigned to improve its reliability and performance. A new coil-winding technique is described which produces better magnetic alignment and improves heat transport out of the windings. Improved field-mapping has allowed the more precise construction to be demonstrated, and an enhanced controller exploits the full features of the hardware, enabling increased acceleration and precision. The new user interface is described and analysis of performance data to monitor friction is shown to allow quality control of bearings and a measure of the ageing of targets during use
Propagation modes of 3D scour below a submarine pipeline in oblique steady currents and waves
This paper presents experimental results on 3D scour propagation along a pipeline under oblique-incidence currents and waves. Different modes of 3D scour propagation were discovered after the local scour was initiated below the pipeline. These modes include scour propagation throughout the whole pipeline, onset of scour at multiple locations due to piping, termination of scour propagation induced by backfill and no scour propagation. The critical conditions for these scour propagation modes were determined in terms of flow incident angle, embedment depth and Shields parameter (or KC number). © 2016 Taylor & Francis Group, London
- …