The Hodgkin-Huxley model of nerve pulse propagation relies on ion currents
through specific resistors called ion channels. We discuss a number of
classical thermodynamic findings on nerves that are not contained in this
classical theory. Particularly striking is the finding of reversible heat
changes, thickness and phase changes of the membrane during the action
potential. Data on various nerves rather suggest that a reversible density
pulse accompanies the action potential of nerves. Here, we attempted to explain
these phenomena by propagating solitons that depend on the presence of
cooperative phase transitions in the nerve membrane. These transitions are,
however, strongly influenced by the presence of anesthetics. Therefore, the
thermodynamic theory of nerve pulses suggests a explanation for the famous
Meyer-Overton rule that states that the critical anesthetic dose is linearly
related to the solubility of the drug in the membranes.Comment: 13 pages, 8 figure