15 research outputs found

    The evolution of temperature and salinity fields in a global ocean model

    No full text
    66-71A three dimensional Ocean General Circulation Model in stretched coordinate with zoom capability over an area of interest has been used to study the evolution of the meridional and vertical structure of temperature, salinity and density of the ocean. In this study 9 discrete vertical levels with flat bottom topography and horizontal resolution of 2.5° (N-S) x 5° (E-W) has been considered. The lateral boundaries are set at 30°S and 30°N for the channel ocean surrounding the earth. The model simulation run is forced by analytic wind stress, heat and salinity fluxes from initial steady state to a stable state of ocean. For the final steady state, the longitudinal average of above fields are taken at all the levels. Finally best fit relations have been obtained from their latitudinal and vertical variation

    Impact of moisture variations on the circulation of the south-west monsoon

    No full text
    The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1–2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings

    Genomic Designing of Pearl Millet:A Resilient Crop for Arid and Semi-arid Environments

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus americanus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agriculturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsiveness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process ultimately improving the rate of genetic gains. Linkage analysis and genome-wide association studies based on different marker systems in detecting quantitative trait loci (QTLs) for important agronomic traits are well demonstrated. Genetic resources including wild relatives have been categorized into primary, secondary and tertiary gene pools based on the level of genetic barriers and ease of gene introgression into pearl millet. A draft on pearl millet whole genome sequence was recently published with an estimated 38,579 genes annotated to establish genomic-assisted breeding. Resequencing a large number of germplasm lines and several population genomic studies provided a valuable insight into population structure, genetic diversity and domestication history of the crop. Successful improvement in combination with modern genomic/genetic resources, tools and technologies and adoption of pearl millet will not only improve the resilience of global food system through on-farm diversification but also dietary intake which depends on diminishingly fewer crops

    The formation and biological significance of N7-guanine adducts

    No full text
    corecore