49 research outputs found

    Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms

    Get PDF
    We compare two conceptually different methods for determining methane column-averaged mixing ratios image from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared (SWIR) measurements. These methods account differently for light scattering by aerosol and cirrus. The proxy method retrieves a CO_2 column which, in conjunction with prior knowledge on CO_2 acts as a proxy for scattering effects. The physics-based method accounts for scattering by retrieving three effective parameters of a scattering layer. Both retrievals are validated on a 19-month data set using ground-based X_CH_4 at 12 stations of the Total Carbon Column Observing Network (TCCON), showing comparable performance: for the proxy retrieval we find station-dependent retrieval biases from −0.312% to 0.421% of X_CH_4 a standard deviation of 0.22% and a typical precision of 17 ppb. The physics method shows biases between −0.836% and −0.081% with a standard deviation of 0.24% and a precision similar to the proxy method. Complementing this validation we compared both retrievals with simulated methane fields from a global chemistry-transport model. This identified shortcomings of both retrievals causing biases of up to 1ings and provide a satisfying validation of any methane retrieval from space-borne SWIR measurements, in our opinion it is essential to further expand the network of TCCON stations

    Anti-counterfeiting: Mixing the Physical and the Digital World

    Get PDF
    In this paper, we overview a set of desiderata for building digital anti-counterfeiting technologies that rely upon the difficulty of manufacturing randomized complex 3D objects. Then, we observe how this set is addressed by RF-DNA, an anti-counterfeiting technology recently proposed by DeJean and Kirovski. RF-DNA constructs certificates of authenticity as random objects that exhibit substantial uniqueness in the electromagnetic domain

    Robust simplifications of multiscale biochemical networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed.</p> <p>Results</p> <p>We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-<it>κ</it>B pathway.</p> <p>Conclusion</p> <p>Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.</p

    Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of 208 mu b(-1) and 38 mu b(-1), respectively, and pp data with a sampled integrated luminosity of 1.17 pb(-1) were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in pp collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval vertical bar eta vertical bar &lt; 2. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The bottom muon results are the most precise measurement of b quark nuclear modification at low transverse momentum where reconstruction of B hadrons is challenging. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV

    Differential cross-section measurements of the production of four charged leptons in association with two jets using the ATLAS detector

    Get PDF
    Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at √s = 13 TeV and with an integrated luminosity of 140 fb−1. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory
    corecore