11 research outputs found

    Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign

    Get PDF
    Tritium (T) distributions on tungsten (W)-coated plasma-facing tiles used in the third ITER-like wall campaign (2015–2016) of the Joint European Torus (JET) were examined by means of an imaging plate technique and β-ray induced x-ray spectrometry, and they were compared with the distributions after the second (2013–2014) campaign. Strong enrichment of T in beryllium (Be) deposition layers was observed after the second campaign. In contrast, T distributions after the third campaign was more uniform though Be deposition layers were visually recognized. The one of the possible explanations is enhanced desorption of T from Be deposition layers due to higher tile temperatures caused by higher energy input in the third campaign

    Atomic data and modelling for fusion : the ADAS Project

    No full text
    The paper is an update on the Atomic Data and Analysis Structure, ADAS, since ICAM‐DATA06 and a forward look to its evolution in the next five years. ADAS is an international project supporting principally magnetic confinement fusion research. It has participant laboratories throughout the world, including ITER and all its partner countries. In parallel with ADAS, the ADAS‐EU Project provides enhanced support for fusion research at Associated Laboratories and Universities in Europe and ITER. OPEN‐ADAS, sponsored jointly by the ADAS Project and IAEA, is the mechanism for open access to principal ADAS atomic data classes and facilitating software for their use. EXTENDED‐ADAS comprises a variety of special, integrated application software, beyond the purely atomic bounds of ADAS, tuned closely to specific diagnostic analyses and plasma models. The current scientific content and scope of these various ADAS and ADAS related activities are briefly reviewed. These span a number of themes including heavy element spectroscopy and models, charge exchange spectroscopy, beam emission spectroscopy and special features which provide a broad baseline of atomic modelling and support. Emphasis will be placed on ‘lifting the fundamental data baseline’—a principal ADAS task for the next few years. This will include discussion of ADAS and ADAS‐EU coordinated and shared activities and some of the methods being exploite

    Review of neutral beam heating on JET for physics experiments and the production of high fusion performance plasmas

    No full text

    First principle integrated modeling of multi-channel transport including Tungsten in JET

    No full text
    For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JETTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality

    Tritium distributions on W-coated divertor tiles used in the third JET ITER-like wall campaign

    Get PDF
    Tritium (T) distributions on tungsten (W)-coated plasma-facing tiles used in the third ITER-like wall campaign (2015-2016) of the Joint European Torus (JET) were examined by means of an imaging plate technique and beta-ray induced x-ray spectrometry, and they were compared with the distributions after the second (2013-2014) campaign. Strong enrichment of T in beryllium (Be) deposition layers was observed after the second campaign. In contrast, T distributions after the third campaign was more uniform though Be deposition layers were visually recognized. The one of the possible explanations is enhanced desorption of T from Be deposition layers due to higher tile temperatures caused by higher energy input in the third campaign

    Disruption prediction with artificial intelligence techniques in tokamak plasmas

    Get PDF
    In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and, in so-called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and tritium, undergo a fusion reaction that releases energy, making fusion a promising option for a sustainable and clean energy source. Tokamak plasmas, however, are prone to disruptions as a result of a sudden collapse of the system terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions expected in the next-generation tokamak, ITER, for example, could cause electromagnetic forces larger than the weight of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, are commonly employed to predict their occurrence—and ideally give enough time to introduce counteracting measures

    Overview of the JET results

    Get PDF
    Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor
    corecore