2 research outputs found

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    General anaesthesia versus local anaesthesia for carotid surgery (GALA): a multicentre, randomised controlled trial

    No full text
    BACKGROUND: The effect of carotid endarterectomy in lowering the risk of stroke ipsilateral to severe atherosclerotic carotid-artery stenosis is offset by complications during or soon after surgery. We compared surgery under general anaesthesia with that under local anaesthesia because prediction and avoidance of perioperative strokes might be easier under local anaesthesia than under general anaesthesia. METHODS: We undertook a parallel group, multicentre, randomised controlled trial of 3526 patients with symptomatic or asymptomatic carotid stenosis from 95 centres in 24 countries. Participants were randomly assigned to surgery under general (n=1753) or local (n=1773) anaesthesia between June, 1999 and October, 2007. The primary outcome was the proportion of patients with stroke (including retinal infarction), myocardial infarction, or death between randomisation and 30 days after surgery. Analysis was by intention to treat. The trial is registered with Current Control Trials number ISRCTN00525237. FINDINGS: A primary outcome occurred in 84 (4.8%) patients assigned to surgery under general anaesthesia and 80 (4.5%) of those assigned to surgery under local anaesthesia; three events per 1000 treated were prevented with local anaesthesia (95% CI -11 to 17; risk ratio [RR] 0.94 [95% CI 0.70 to 1.27]). The two groups did not significantly differ for quality of life, length of hospital stay, or the primary outcome in the prespecified subgroups of age, contralateral carotid occlusion, and baseline surgical risk. INTERPRETATION: We have not shown a definite difference in outcomes between general and local anaesthesia for carotid surgery. The anaesthetist and surgeon, in consultation with the patient, should decide which anaesthetic technique to use on an individual basis. FUNDING: The Health Foundation (UK) and European Society of Vascular Surgery
    corecore