1,645 research outputs found

    Advanced practice in radiotherapy across Europe: stakeholders’ perceptions of implementation and evolution

    Get PDF
    Introduction Adapting radiotherapy services with workforce innovation using skills-mix or task-shifting optimises resources, supporting current and future demands. Advanced practitioners (APs) work at a different level of practice (beyond initial registration) across four pillars: clinical practice, leadership and management, education, and research. There is limited cross-country research on the advanced therapeutic radiographers/radiation therapists (TR/RTTs), particularly in Europe. This study aimed to investigate European radiotherapy stakeholders’ perceptions regarding current and future advanced practice (AP). Methods From June to September 2022, one-to-one online semi-structured interviews were conducted in English, and audio and video were recorded. Full verbatim audio files were independently transcribed and checked by interviewer and interviewees. Braun and Clarke's seven steps guided the thematic analysis (using NVivo). Results Thirty-three interviewees working or studying in 16 European countries represented practitioners (n=14), managers (n=6), educators (n=4), professional bodies (n=4), students (n=3), and regulators (n=2). Four overarching themes emerged: “AP drivers and outcomes”, “AP challenges vs enablers”, “Current vs future AP”, “Becoming and being advanced practitioner”. Participants identified research as the neglected AP pillar due to a lack of protected time, limited staff skills, no research culture, no funding, workload, and clinical priorities. Interviewees highlighted the importance of consistency in job titles, harmonisation of education models and curricula, definition of AP requirements, and support for all AP pillars through job plans and workforce planning. Conclusion Neither the profession nor education of TR/RTTs are harmonised across Europe, which is highly reflected in advanced-level practice. Advanced TR/RTTs should work across all pillars, including research, and these should be embedded in master's programmes, including leadership. Implications for practice This study highlights a policy gap in the education and practice of APs in radiotherapy

    Towards a water-smart society: Progress in linking theory and practice

    Get PDF
    Few scientific publications discuss the vision of the water-smart society. Our paper addresses this gap, outlining key principles of urban water–smartness and translating them into five strategic objectives to support decision-making at the local government level. Based on recent literature and dialogue with six European water Living Labs, we argue that the water-smart society must highlight societal well-being and co-development across sectors. Furthermore, we emphasize the need for a long-term perspective, conserving nature, and maximising ecosystem services, while anticipating change. Finally, we discuss how a more grounded conceptualisation of the water-smart society can guide utilities and urban policy design.info:eu-repo/semantics/publishedVersio

    An alternative order parameter for the 4-state Potts model

    Get PDF
    We have investigated the dynamic critical behavior of the two-dimensional 4-state Potts model using an alternative order parameter first used by Vanderzande [J. Phys. A: Math. Gen. \textbf{20}, L549 (1987)] in the study of the Z(5) model. We have estimated the global persistence exponent Ξg\theta_g by following the time evolution of the probability P(t)P(t) that the considered order parameter does not change its sign up to time tt. We have also obtained the critical exponents Ξ\theta, zz, Îœ\nu, and ÎČ\beta using this alternative definition of the order parameter and our results are in complete agreement with available values found in literature.Comment: 6 pages, 6 figure

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than ∌60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Quantum Theory in Accelerated Frames of Reference

    Get PDF
    The observational basis of quantum theory in accelerated systems is studied. The extension of Lorentz invariance to accelerated systems via the hypothesis of locality is discussed and the limitations of this hypothesis are pointed out. The nonlocal theory of accelerated observers is briefly described. Moreover, the main observational aspects of Dirac's equation in noninertial frames of reference are presented. The Galilean invariance of nonrelativistic quantum mechanics and the mass superselection rule are examined in the light of the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005

    Charged BTZ-like Black Holes in Higher Dimensions

    Full text link
    Motivated by many worthwhile paper about (2 + 1)-dimensional BTZ black holes, we generalize them to to (n + 1)-dimensional solutions, so called BTZ-like solutions. We show that the electric field of BTZ-like solutions is the same as (2 + 1)-dimensional BTZ black holes, and also their lapse functions are approximately the same, too. By these similarities, it is also interesting to investigate the geometric and thermodynamics properties of the BTZ-like solutions. We find that, depending on the metric parameters, the BTZ-like solutions may be interpreted as black hole solutions with inner (Cauchy) and outer (event) horizons, an extreme black hole or naked singularity. Then, we calculate thermodynamics quantities and conserved quantities, and show that they satisfy the first law of thermodynamics. Finally, we perform a stability analysis in the canonical ensemble and show that the BTZ-like solutions are stable in the whole phase space.Comment: 5 pages, two column format, one figur

    Collapsing shear-free perfect fluid spheres with heat flow

    Full text link
    A global view is given upon the study of collapsing shear-free perfect fluid spheres with heat flow. We apply a compact formalism, which simplifies the isotropy condition and the condition for conformal flatness. This formalism also presents the simplest possible version of the main junction condition, demonstrated explicitly for conformally flat and geodesic solutions. It gives the right functions to disentangle this condition into well known differential equations like those of Abel, Riccati, Bernoulli and the linear one. It yields an alternative derivation of the general solution with functionally dependent metric components. We bring together the results for static and time- dependent models to describe six generating functions of the general solution to the isotropy equation. Their common features and relations between them are elucidated. A general formula for separable solutions is given, incorporating collapse to a black hole or to a naked singularity.Comment: 26 page

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    • 

    corecore