8,009 research outputs found

    Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals

    Full text link
    Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. The interaction of the voids is not reflected in the volumetric asymptotic growth rate of the voids, as demonstrated here. Finally, the practice of using a single void and periodic boundary conditions to study coalescence is examined critically and shown to produce results markedly different than the coalescence of a pair of isolated voids.Comment: Accepted for publication in Physical Review

    Entanglement in a quantum annealing processor

    Full text link
    Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a series of scalable QA processors consisting of networks of manufactured interacting spins (qubits). Here, we use qubit tunneling spectroscopy to measure the energy eigenspectrum of two- and eight-qubit systems within one such processor, demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits become entangled and that entanglement persists even as these systems reach equilibrium with a thermal environment. Our results provide an encouraging sign that QA is a viable technology for large-scale quantum computing.Comment: 13 pages, 8 figures, contact corresponding author for Supplementary Informatio

    Long time dynamics and coherent states in nonlinear wave equations

    Full text link
    We discuss recent progress in finding all coherent states supported by nonlinear wave equations, their stability and the long time behavior of nearby solutions.Comment: bases on the authors presentation at 2015 AMMCS-CAIMS Congress, to appear in Fields Institute Communications: Advances in Applied Mathematics, Modeling, and Computational Science 201

    A roadmap to advance delirium research: recommendations from the NIDUS Scientific Think Tank

    Get PDF
    Delirium is an acute disorder of attention and cognition. It occurs across the life span, yet it is particularly common among older adults, and is closely linked with underlying neurocognitive disorders. Evidence is mounting that intervening on delirium may represent an important opportunity for delaying the onset or progression of dementia. To accelerate the current understanding of delirium, the Network for Investigation of Delirium: Unifying Scientists (NIDUS) held a conference “Advancing Delirium Research: A Scientific Think Tank” in June 2019. This White Paper encompasses the major knowledge and research gaps identified at the conference: advancing delirium definition and measurement, understanding delirium pathophysiology, and prevention and treatment of delirium. A roadmap of research priorities is proposed to advance the field in a systematic, interdisciplinary, and coordinated fashion. A call is made for an international consortium and biobank targeted to delirium, as well as a public health campaign to advance the field.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155509/1/alz12076_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155509/2/alz12076.pd

    Left ventricular assist device implantation in high risk destination therapy patients: an alternative surgical approach

    Get PDF
    Left Ventricular Assist Device (LVAD) for Destination Therapy (DT) is an established therapy for end stage heart failure patients who are not transplant candidates. Many DT patients requiring LVADs have had prior open heart surgery, the majority of whom had prior sternotomy. In addition, DT patients tend to be older and more likely to have more significant co-morbidities than their Bridge-To-Transplant (BTT) counterparts. As such, placement of an implantable LVAD in DT patients can be technically hazardous and potentially prone to more perioperative complications. The purpose of this report is to describe an alternative implantation approach for the implantation of the Heartmate IIℱ LVAD in high risk DT patients

    Anti-antimicrobial Peptides FOLDING-MEDIATED HOST DEFENSE ANTAGONISTS:FOLDING-MEDIATED HOST DEFENSE ANTAGONISTS

    Get PDF
    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance

    Emerging immunopharmacological targets in multiple sclerosis.

    Get PDF
    Inflammatory demyelination of the central nervous system (CNS) is the hallmark of multiple sclerosis (MS), a chronic debilitating disease that affects more than 2.5 million individuals worldwide. It has been widely accepted, although not proven, that the major pathogenic mechanism of MS involves myelin-reactive T cell activation in the periphery and migration into the CNS, which subsequently triggers an inflammatory cascade that leads to demyelination and axonal damage. Virtually all MS medications now in use target the immune system and prevent tissue damage by modulating neuroinflammatory processes. Although current therapies such as commonly prescribed disease-modifying medications decrease the relapse rate in relapsing-remitting MS (RRMS), the prevention of long-term accumulation of deficits remains a challenge. Medications used for progressive forms of MS also have limited efficacy. The need for therapies that are effective against disease progression continues to drive the search for novel pharmacological targets. In recent years, due to a better understanding of MS immunopathogenesis, new approaches have been introduced that more specifically target autoreactive immune cells and their products, thus increasing specificity and efficacy, while reducing potential side effects such as global immunosuppression. In this review we describe several immunopharmacological targets that are currently being explored for MS therapy

    Experimental Demonstration of a Robust and Scalable Flux Qubit

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevB.81.134510.A rf–superconducting quantum interference device (SQUID) flux qubit that is robust against fabrication variations in Josephson-junction critical currents and device inductance has been implemented. Measurements of the persistent current and of the tunneling energy between the two lowest-lying states, both in the coherent and incoherent regimes, are presented. These experimental results are shown to be in agreement with predictions of a quantum-mechanical Hamiltonian whose parameters were independently calibrated, thus justifying the identification of this device as a flux qubit. In addition, measurements of the flux and critical current noise spectral densities are presented that indicate that these devices with Nb wiring are comparable to the best Al wiring rf SQUIDs reported in the literature thus far, with a 1/f flux noise spectral density at 1 Hz of 1.3+0.7−0.5 ΌΊ0/Hz−−√. An explicit formula for converting the observed flux noise spectral density into a free-induction-decay time for a flux qubit biased to its optimal point and operated in the energy eigenbasis is presented
    • 

    corecore