145 research outputs found

    Sustainability, epistemology, ecocentric business and marketing strategy:ideology, reality and vision

    Get PDF
    This conceptual article examines the relationship between marketing and sustainability through the dual lenses of anthropocentric and ecocentric epistemology. Using the current anthropocentric epistemology and its associated dominant social paradigm, corporate ecological sustainability in commercial practice and business school research and teaching is difficult to achieve. However, adopting an ecocentric epistemology enables the development of an alternative business and marketing approach that places equal importance on nature, the planet, and ecological sustainability as the source of human and other species' well-being, as well as the source of all products and services. This article examines ecocentric, transformational business, and marketing strategies epistemologically, conceptually and practically and thereby proposes six ecocentric, transformational, strategic marketing universal premises as part of a vision of and solution to current global un-sustainability. Finally, this article outlines several opportunities for management practice and further research

    Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands Ecology and Management 17 (2009): 469-487, doi: 10.1007/s11273-008-9125-3.The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. S. patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.This research was supported by the Plum Island Ecosystem Long Term Ecological Research program (OCE-972692 and OCE 0423565) of the National Science Foundation (NSF). J. Horowitz and J. Ludlam were supported by NSF Research Experience for Undergraduate (REU) grants when they were students at Hampshire College and Gordon College respectively

    Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill

    Get PDF
    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy

    The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae)

    Full text link
    The digestive system of larvae of Tipula abdominalis (Diptera, Tipulidae), a stream detritivore, is poorly adapted for the digestion of the major polysaccharides in its diet, but well adapted for the digestion of protein. These crane fly larvae are unable to digest the major cell wall polysaccharides of higher plants, i.e., cellulose, hemicellulose and pectin. The only polysaccharides toward which the midguts of T. abdominalis exhibited any activity were α-amylose and laminarin, indicating that polysaccharide digestion is restricted to α-1,4-and β-1,3-glucans. The most concentrated source of these two classes of carbohydrates in submerged leaf litter would be associated fungal tissue. The midgut of T. abdominalis is strongly alkaline throughout, with a maximum pH near 11.5 in a narrow zone near the midpoint. Proteolytic activity in the midgut is extraordinarily high, and the pH optimum for midgut proteolytic activity is above 11. We conclude that the high alkalinity and high proteolytic activity observed in T. abdominalis larvae are manifestations of a highly efficient protein-digesting system, a system of crucial importance to a nitrogen-limited organism which must derive its nitrogen from a resource in which much of the limited nitrogen present is in a “bound” form in complexes of proteins with lignins and polyphenols.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47733/1/442_2004_Article_BF00346265.pd

    Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning

    Get PDF
    Networks of trophic links (food webs) are used to describe and understand mechanistic routes for translocation of energy (biomass) between species. However, a relatively low proportion of ecosystems have been studied using food web approaches due to difficulties in making observations on large numbers of species. In this paper we demonstrate that Machine Learning of food webs, using a logic-based approach called A/ILP, can generate plausible and testable food webs from field sample data. Our example data come from a national-scale Vortis suction sampling of invertebrates from arable fields in Great Britain. We found that 45 invertebrate species or taxa, representing approximately 25% of the sample and about 74% of the invertebrate individuals included in the learning, were hypothesized to be linked. As might be expected, detritivore Collembola were consistently the most important prey. Generalist and omnivorous carabid beetles were hypothesized to be the dominant predators of the system. We were, however, surprised by the importance of carabid larvae suggested by the machine learning as predators of a wide variety of prey. High probability links were hypothesized for widespread, potentially destabilizing, intra-guild predation; predictions that could be experimentally tested. Many of the high probability links in the model have already been observed or suggested for this system, supporting our contention that A/ILP learning can produce plausible food webs from sample data, independent of our preconceptions about “who eats whom.” Well-characterised links in the literature correspond with links ascribed with high probability through A/ILP. We believe that this very general Machine Learning approach has great power and could be used to extend and test our current theories of agricultural ecosystem dynamics and function. In particular, we believe it could be used to support the development of a wider theory of ecosystem responses to environmental change

    Salinity and Simulated Herbivory Influence Spartina alterniflora Traits and Defense Strategy

    Get PDF
    Sea level rise is expected to push saline waters into previously fresher regions of estuaries, and higher salinities may expose oligohaline marshes to invertebrate herbivores typically constrained by salinity. The smooth cordgrass, Spartina alterniflora (syn. Sporobolus alterniflorus), can defend itself against herbivores in polyhaline marshes, however it is not known if S. alterniflora’s defense varies along the mesohaline to oligohaline marsh gradient in estuaries. I found that S. alterniflora from a mesohaline marsh is better defended than plants from an oligohaline marsh, supporting the optimal defense theory. Higher salinity treatments lowered carbon content, C:N, and new stem biomass production, traits associated with a tolerance strategy, suggesting that salinity may mediate the defense response of S. alterniflora. Further, simulated herbivory increased the nitrogen content and decreased C:N of S. alterniflora. This indicates that grazing may increase S. alterniflora susceptibility to future herbivory via improved forage quality. Simulated herbivory also decreased both belowground and new stem biomass production, highlighting a potential pathway in which herbivory can indirectly facilitate marsh loss, as S. alterniflora biomass is critical for vertical accretion and marsh stability under future sea level rise scenarios

    Future response of global coastal wetlands to sea-level rise.

    Get PDF
    The response of coastal wetlands to sea-level rise during the twenty-first century remains uncertain. Global-scale projections suggest that between 20 and 90 per cent (for low and high sea-level rise scenarios, respectively) of the present-day coastal wetland area will be lost, which will in turn result in the loss of biodiversity and highly valued ecosystem services1-3. These projections do not necessarily take into account all essential geomorphological4-7 and socio-economic system feedbacks8. Here we present an integrated global modelling approach that considers both the ability of coastal wetlands to build up vertically by sediment accretion, and the accommodation space, namely, the vertical and lateral space available for fine sediments to accumulate and be colonized by wetland vegetation. We use this approach to assess global-scale changes in coastal wetland area in response to global sea-level rise and anthropogenic coastal occupation during the twenty-first century. On the basis of our simulations, we find that, globally, rather than losses, wetland gains of up to 60 per cent of the current area are possible, if more than 37 per cent (our upper estimate for current accommodation space) of coastal wetlands have sufficient accommodation space, and sediment supply remains at present levels. In contrast to previous studies1-3, we project that until 2100, the loss of global coastal wetland area will range between 0 and 30 per cent, assuming no further accommodation space in addition to current levels. Our simulations suggest that the resilience of global wetlands is primarily driven by the availability of accommodation space, which is strongly influenced by the building of anthropogenic infrastructure in the coastal zone and such infrastructure is expected to change over the twenty-first century. Rather than being an inevitable consequence of global sea-level rise, our findings indicate that large-scale loss of coastal wetlands might be avoidable, if sufficient additional accommodation space can be created through careful nature-based adaptation solutions to coastal management.Personal research fellowship of Mark Schuerch (Project Number 272052902) and by the Cambridge Coastal Research Unit (Visiting Scholar Programme). Furthermore, this work has partly been supported by the EU research project RISES-AM- (FP7-ENV-693396)
    corecore