56 research outputs found

    Revisiting the Effect of Acute P. falciparum Malaria on Epstein-Barr Virus: Host Balance in the Setting of Reduced Malaria Endemicity

    Get PDF
    Burkitt's lymphoma (BL), an EBV-associated tumour, occurs at high incidence in populations where malaria is holoendemic. Previous studies in one such population suggested that acute P.falciparum infection impairs EBV-specific T-cell surveillance, allowing expansion of EBV infected B-cells from which BL derives. We re-examined the situation in the same area, The Gambia, after a reduction in malaria endemicity. Cellular immune responses to EBV were measured in children with uncomplicated malaria before (day 0) and after treatment (day 28), comparing EBV genome loads in blood and EBV-specific CD8+ T-cell numbers (assayed by MHC Class I tetramers and IFNΞ³ ELISPOTS) with those seen in age- and sex-matched healthy controls. No significant changes were seen in EBV genome loads, percentage of EBV-specific CD8+ T-cells and IFNΞ³ producing T-cells in acute versus convalescent samples, nor any difference versus controls. Regression assays performed also no longer detected any impairment of EBV-specific T-cell surveillance. Acute uncomplicated malaria infection no longer alters EBV-specific immune responses in children in The Gambia. Given the recent decline in malaria incidence in that country, we hypothesise that gross disturbance of the EBV-host balance may be a specific effect of acute malaria only in children with a history of chronic/recurrent malaria challenge

    Prescribing practice for malaria following introduction of artemether-lumefantrine in an urban area with declining endemicity in West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decline in malaria coinciding with the introduction of newer, costly anti-malarials has prompted studies into the overtreatment for malaria mostly in East Africa. The study presented here describes prescribing practices for malaria at health facilities in a West African country.</p> <p>Methods</p> <p>Cross-sectional surveys were carried out in two urban Gambian primary health facilities (PHFs) during and outside the malaria transmission season. Facilities were comparable in terms of the staffing compliment and capability to perform slide microscopy. Patients treated for malaria were enrolled after consultations and blood smears collected and read at a reference laboratory. Slide reading results from the PHFs were compared to the reference readings and the proportion of cases treated but with a negative test result at the reference laboratory was determined.</p> <p>Results</p> <p>Slide requests were made for 33.2% (173) of those enrolled, being more frequent in children (0-15 yrs) than adults during the wet season (p = 0.003). In the same period, requests were commoner in under-fives compared to older children (p = 0.022); however, a positive test result was 4.4 times more likely in the latter group (p = 0.010). Parasitaemia was confirmed for only 4.7% (10/215) and 12.5% (37/297) of patients in the dry and wet seasons, respectively. The negative predictive value of a PHF slide remained above 97% in both seasons.</p> <p>Conclusions</p> <p>The study provides evidence for considerable overtreatment for malaria in a West African setting comparable to reports from areas with similar low malaria transmission in East Africa. The data suggest that laboratory facilities may be under-used, and that adherence to negative PHF slide results could significantly reduce the degree of overtreatment. The "peak prevalence" in 5-15 year olds may reflect successful implementation of malaria control interventions in under-fives, but point out the need to extend such interventions to older children.</p

    Continued Decline of Malaria in The Gambia with Implications for Elimination

    Get PDF
    BACKGROUND: A substantial decline in malaria was reported to have occurred over several years until 2007 in the western part of The Gambia, encouraging consideration of future elimination in this previously highly endemic region. Scale up of interventions has since increased with support from the Global Fund and other donors. METHODOLOGY/PRINCIPAL FINDINGS: We continued to examine laboratory records at four health facilities previously studied and investigated six additional facilities for a 7 year period, adding data from 243,707 slide examinations, to determine trends throughout the country until the end of 2009. We actively detected infections in a community cohort of 800 children living in rural villages throughout the 2008 malaria season, and assayed serological changes in another rural population between 2006 and 2009. Proportions of malaria positive slides declined significantly at all of the 10 health facilities between 2003 (annual mean across all sites, 38.7%) and 2009 (annual mean, 7.9%). Statistical modelling of trends confirmed significant seasonality and decline over time at each facility. Slide positivity was lowest in 2009 at all sites, except two where lowest levels were observed in 2006. Mapping households of cases presenting at the latter sites in 2007-2009 indicated that these were not restricted to a few residual foci. Only 2.8% (22/800) of a rural cohort of children had a malaria episode in the 2008 season, and there was substantial serological decline between 2006 and 2009 in a separate rural area. CONCLUSIONS: Malaria has continued to decline in The Gambia, as indicated by a downward trend in slide positivity at health facilities, and unprecedented low incidence and seroprevalence in community surveys. We recommend intensification of control interventions for several years to further reduce incidence, prior to considering an elimination programme

    Regulatory T Cell Induction during Plasmodium chabaudi Infection Modifies the Clinical Course of Experimental Autoimmune Encephalomyelitis

    Get PDF
    BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is used as an animal model for human multiple sclerosis (MS), which is an inflammatory demyelinating autoimmune disease of the central nervous system characterized by activation of Th1 and/or Th17 cells. Human autoimmune diseases can be either exacerbated or suppressed by infectious agents. Recent studies have shown that regulatory T cells play a crucial role in the escape mechanism of Plasmodium spp. both in humans and in experimental models. These cells suppress the Th1 response against the parasite and prevent its elimination. Regulatory T cells have been largely associated with protection or amelioration in several autoimmune diseases, mainly by their capacity to suppress proinflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we verified that CD4(+)CD25(+) regulatory T cells (T regs) generated during malaria infection (6 days after EAE induction) interfere with the evolution of EAE. We observed a positive correlation between the reduction of EAE clinical symptoms and an increase of parasitemia levels. Suppression of the disease was also accompanied by a decrease in the expression of IL-17 and IFN-Ξ³ and increases in the expression of IL-10 and TGF-Ξ²1 relative to EAE control mice. The adoptive transfer of CD4(+)CD25(+) cells from P. chabaudi-infected mice reduced the clinical evolution of EAE, confirming the role of these T regs. CONCLUSIONS/SIGNIFICANCE: These data corroborate previous findings showing that infections interfere with the prevalence and evolution of autoimmune diseases by inducing regulatory T cells, which regulate EAE in an apparently non-specific manner

    Malignant B Cells Induce the Conversion of CD4+CD25βˆ’ T Cells to Regulatory T Cells in B-Cell Non-Hodgkin Lymphoma

    Get PDF
    Recent evidence has demonstrated that regulatory T cells (Treg) were enriched in the tumor sites of patients with B-cell non-Hodgkin lymphoma (NHL). However, the causes of enrichment and suppressive mechanisms need to be further elucidated. Here we demonstrated that CD4+CD25+FoxP3+CD127lo Treg were markedly increased and their phenotypes were different in peripheral blood (PB) as well as bone marrow (BM) from newly diagnosed patients with B-cell NHL compared with those from healthy volunteers (HVs). Involved lymphatic tissues also showed higher frequencies of Treg than benign lymph nodes. Moreover, the frequencies of Treg were significantly higher in involved lymphatic tissues than those from PB as well as BM in the same patients. Suppression mediated by CD4+CD25+ Treg co-cultured with allogeneic CFSE-labeled CD4+CD25βˆ’ responder cells was also higher in involved lymphatic tissues from B-cell NHL than that mediated by Treg from HVs. In addition, we found that malignant B cells significantly induced FoxP3 expression and regulatory function in CD4+CD25βˆ’ T cells in vitro. In contrast, normal B cells could not induce the conversion of CD4+CD25βˆ’ T cells to Treg. We also showed that the PD-1/B7-H1 pathway might play an important role in Treg induction. Taken together, our results suggest that malignant B cells induce the conversion of CD4+CD25βˆ’ T cells to Treg, which may play a role in the pathogenesis of B-cell NHL and represent a promising therapeutic target

    The Breadth, but Not the Magnitude, of Circulating Memory B Cell Responses to P. falciparum Increases with Age/Exposure in an Area of Low Transmission

    Get PDF
    BACKGROUND: Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired. METHODS: We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot. FINDINGS AND CONCLUSIONS: The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens

    Reduced T Regulatory Cell Response during Acute Plasmodium falciparum Infection in Malian Children Co-Infected with Schistosoma haematobium

    Get PDF
    Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4-8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria

    Natural Regulatory T Cells in Malaria: Host or Parasite Allies?

    Get PDF
    Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed

    Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans

    Get PDF
    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNΞ³) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naΓ―ve human volunteers undergoing single (nβ€Š=β€Š5) or multiple (nβ€Š=β€Š10) experimental P. falciparum infections under highly controlled conditions. IFNΞ³ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only β€˜adaptive’ but also β€˜innate’ lymphocyte subsets contribute to the increased IFNΞ³ response, including Ξ±Ξ²T cells, Ξ³Ξ΄T cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the Ξ±Ξ²T cells and Ξ³Ξ΄T compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNΞ³+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field
    • …
    corecore