39 research outputs found

    International collaboration between collections-based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi

    Get PDF
    The United Nations' Sustainable Development Goal (SDG) 17 calls for “strong global partnerships and cooperation” to support the other SDGs. The collections-based science community offers many examples of conservation of plant and fungal biodiversity, sharing, repatriation and aggregation of data, access to new technologies, supply of plant and fungal material, strengthening capacity of practitioners, and benefit sharing with the providers of biodiversity and genetic resources. Collaboration framed by workable multilateral treaties will increase our understanding of plant and fungal diversity, help halt biodiversity loss, and accelerate our sustainable use of plants and fungi and the exploration of their useful traits. Summary: Collections-based institutes are at the forefront of generating knowledge and understanding of plant and fungal biodiversity. Through the analysis of occurrence data, the use of modern technologies to better understand the evolutionary relationships between species and documentation of their useful properties, the work of collections-based institutes provides good models for conservation; addressing species loss and improving sustainable use of plants and fungi. Nevertheless, the pressure on the planet's plant and fungal diversity is relentless. We argue that a massive increase in the accessibility of preserved and living collections of plants and fungi is required. An increased scale of responsible exploration to both conserve and unlock the useful properties of plants and fungi is needed to deliver solutions to the many global challenges facing humanity and the planet. This article explores the role of collaborations between collections-based institutes and their partners in preventing biodiversity loss and delivering sustainable development. Drawing on examples from herbaria, agricultural and wild species genebanks, mycological collections, an international NGO, and the botanic garden community, we demonstrate how collaboration improves efficiency and impact. Collaborations can be peer to peer, institutional, governmental, national, or international, they may involve work with local communities and are frequently a combination of these. We suggest the five key benefits to collaboration and show that with trust, understanding, and mutual respect, powerful and sustainable partnerships develop. Such trust and respect are hard won, but once established, sustain a high level of commitment, enable development of shared long-term visions of success, and attract diverse funding streams

    Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents

    Get PDF
    The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.info:eu-repo/semantics/publishedVersio

    Sources and rates of potassium for sweet orange production

    Get PDF
    Fruit yield and quality of citrus trees (Citrus spp.) is markedly affected by potassium (K) fertilization. Potassium chloride is the major source of K, even though other sources are also available for agricultural use when crops are sensitive to chloride or where potential for accumulation of salts in soils exists. Only few studies addressed the effect of K sources on yield and quality of citrus fruits. Therefore, the present study was conducted to evaluate K2SO4 and KCl fertilizer sources at 0, 100, 200, and 300 kg ha-1 per year K2O on fruit yield and quality of 'PĂȘra' and 'Valencia' sweet orange trees in the field. The experiments were carried out in a 4 × 2 factorial design under randomized complete blocks, with four replicates from 2001 to 2004. Fruit yield increased with increased K fertilization. Nutrient rate for maximum economic yield of 'PĂȘra' was 200 kg ha-1 of K2O and for 'Valencia', 270 kg ha-1 of K2O. Differences were attributed to higher production and K exportation by fruits of 'Valencia'. Fruit mass also increased with increased K fertilization what decreased total soluble solids in juice, and which correlated with leaf K concentrations for 'Valencia' (r = 0.76; p < 0.05). Leaf Ca, Mg and B concentrations decreased with K rates. Additionally, leaf Cl increased up to 440 mg kg-1 with KCl rates, even though no negative effects occurred either on fruit yield or quality of trees

    Considering Soil Potassium Pools with Dissimilar Plant Availability

    Get PDF
    Soil potassium (K) has traditionally been portrayed as residing in four functional pools: solution K, exchangeable K, interlayer (sometimes referred to as “fixed” or “nonexchangeable”) K, and structural K in primary minerals. However, this four-pool model and associated terminology have created confusion in understanding the dynamics of K supply to plants and the fate of K returned to the soil in fertilizers, residues, or waste products. This chapter presents an alternative framework to depict soil K pools. The framework distinguishes between micas and feldspars as K-bearing primary minerals, based on the presence of K in interlayer positions or three-dimensional framework structures, respectively; identifies a pool of K in neoformed secondary minerals that can include fertilizer reaction products; and replaces the “exchangeable” K pool with a pool defined as “surface-adsorbed” K, identifying where the K is located and the mechanism by which it is held rather than identification based on particular soil testing procedures. In this chapter, we discuss these K pools and their behavior in relation to plant K acquisition and soil K dynamics

    State of the world’s plants and fungi 2020

    Get PDF
    Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity
    corecore