27 research outputs found

    An Asymmetric Cone Model for Halo Coronal Mass Ejections

    Full text link
    Due to projection effects, coronagraphic observations cannot uniquely determine parameters relevant to the geoeffectiveness of CMEs, such as the true propagation speed, width, or source location. The Cone Model for Coronal Mass Ejections (CMEs) has been studied in this respect and it could be used to obtain these parameters. There are evidences that some CMEs initiate from a flux-rope topology. It seems that these CMEs should be elongated along the flux-rope axis and the cross section of the cone base should be rather elliptical than circular. In the present paper we applied an asymmetric cone model to get the real space parameters of frontsided halo CMEs (HCMEs) recorded by SOHO/LASCO coronagraphs in 2002. The cone model parameters are generated through a fitting procedure to the projected speeds measured at different position angles on the plane of the sky. We consider models with the apex of the cone located at the center and surface of the Sun. The results are compared to the standard symmetric cone model

    Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation

    Full text link
    In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs having well-measured masses against 12,050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10-80 minutes afterward, and we further require the flare and CME to occur within +/-45 degrees in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log(CME mass)~0.70*log(flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic

    From Predicting Solar Activity to Forecasting Space Weather: Practical Examples of Research-to-Operations and Operations-to-Research

    Full text link
    The successful transition of research to operations (R2O) and operations to research (O2R) requires, above all, interaction between the two communities. We explore the role that close interaction and ongoing communication played in the successful fielding of three separate developments: an observation platform, a numerical model, and a visualization and specification tool. Additionally, we will examine how these three pieces came together to revolutionize interplanetary coronal mass ejection (ICME) arrival forecasts. A discussion of the importance of education and training in ensuring a positive outcome from R2O activity follows. We describe efforts by the meteorological community to make research results more accessible to forecasters and the applicability of these efforts to the transfer of space-weather research.We end with a forecaster "wish list" for R2O transitions. Ongoing, two-way communication between the research and operations communities is the thread connecting it all.Comment: 18 pages, 3 figures, Solar Physics in pres

    Machine learning-based investigation of the association between CMEs and filaments

    Get PDF
    YesIn this work we study the association between eruptive filaments/prominences and coronal mass ejections (CMEs) using machine learning-based algorithms that analyse the solar data available between January 1996 and December 2001. The Support Vector Machine (SVM) learning algorithm is used for the purpose of knowledge extraction from the association results. The aim is to identify patterns of associations that can be represented using SVM learning rules for the subsequent use in near real-time and reliable CME prediction systems. Timing and location data in the NGDC filament catalogue and the SOHO/LASCO CME catalogue are processed to associate filaments with CMEs. In the previous studies which classified CMEs into gradual and impulsive CMEs, the associations were refined based on CME speed and acceleration. Then the associated pairs were refined manually to increase the accuracy of the training dataset. In the current study, a data- mining system has been created to process and associate filament and CME data, which are arranged in numerical training vectors. Then the data are fed to SVMs to extract the embedded knowledge and provide the learning rules that could have the potential, in the future, to provide automated predictions of CMEs. The features representing the event time (average of the start and end times), duration, type and extent of the filaments are extracted from all the associated and not-associated filaments and converted to a numerical format that is suitable for SVM use. Several validation and verification methods are used on the extracted dataset to determine if CMEs can be predicted solely and efficiently based on the associated filaments. More than 14000 experiments are carried out to optimise the SVM and determine the input features that provide the best performance

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations

    Get PDF
    Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed
    corecore