227 research outputs found

    Quantum-state control in optical lattices

    Full text link
    We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend themselves particularly well to reservoir engineering via well controlled fluctuations in the potential, making the atom/lattice system attractive for the study of decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199

    Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the <it>in vitro </it>and <it>in vivo </it>effect of cellular soluble factors produced by the epithelial cell line on tumor cells.</p> <p>Methods</p> <p>Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The <it>in vitro </it>effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The <it>in vivo </it>anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in <it>nude </it>mice by B16-F10 and HeLa cells.</p> <p>Results</p> <p>LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM-234mf cells were α-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive <it>in vitro </it>and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234ep-derived factors were able to inhibit the <it>in vitro </it>growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G<sub>0</sub>/G<sub>1 </sub>phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in <it>nude </it>mice.</p> <p>Conclusion</p> <p>Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic activities induced by tumor-derived epithelial cells.</p

    Myoepithelial cells: good fences make good neighbors

    Get PDF
    The mammary gland consists of an extensively branched ductal network contained within a distinctive basement membrane and encompassed by a stromal compartment. During lactation, production of milk depends on the action of the two epithelial cell types that make up the ductal network: luminal cells, which secrete the milk components into the ductal lumen; and myoepithelial cells, which contract to aid in the ejection of milk. There is increasing evidence that the myoepithelial cells also play a key role in the organizational development of the mammary gland, and that the loss and/or change of myoepithelial cell function is a key step in the development of breast cancer. In this review we briefly address the characteristics of breast myoepithelial cells from human breast and mouse mammary gland, how they function in normal mammary gland development, and their recently appreciated role in tumor suppression

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454

    The normal breast microenvironment of premenopausal women differentially influences the behavior of breast cancer cells in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer studies frequently focus on the role of the tumor microenvironment in the promotion of cancer; however, the influence of the normal breast microenvironment on cancer cells remains relatively unknown. To investigate the role of the normal breast microenvironment on breast cancer cell tumorigenicity, we examined whether extracellular matrix molecules (ECM) derived from premenopausal African-American (AA) or Caucasian-American (CAU) breast tissue would affect the tumorigenicity of cancer cells <it>in vitro </it>and <it>in vivo</it>. We chose these two populations because of the well documented predisposition of AA women to develop aggressive, highly metastatic breast cancer compared to CAU women.</p> <p>Methods</p> <p>The effects of primary breast fibroblasts on tumorigenicity were analyzed via real-time PCR arrays and mouse xenograft models. Whole breast ECM was isolated, analyzed via zymography, and its effects on breast cancer cell aggressiveness were tested <it>in vitro </it>via soft agar and invasion assays, and <it>in vivo </it>via xenograft models. Breast ECM and hormone metabolites were analyzed via mass spectrometry.</p> <p>Results</p> <p>Mouse mammary glands humanized with premenopausal CAU fibroblasts and injected with primary breast cancer cells developed significantly larger tumors compared to AA humanized glands. Examination of 164 ECM molecules and cytokines from CAU-derived fibroblasts demonstrated a differentially regulated set of ECM proteins and increased cytokine expression. Whole breast ECM was isolated; invasion and soft agar assays demonstrated that estrogen receptor (ER)<sup>-</sup>, progesterone receptor (PR)/PR<sup>- </sup>cells were significantly more aggressive when in contact with AA ECM, as were ER<sup>+</sup>/PR<sup>+ </sup>cells with CAU ECM. Using zymography, protease activity was comparatively upregulated in CAU ECM. In xenograft models, CAU ECM significantly increased the tumorigenicity of ER<sup>+</sup>/PR<sup>+ </sup>cells and enhanced metastases. Mass spectrometry analysis of ECM proteins showed that only 1,759 of approximately 8,000 identified were in common. In the AA dataset, proteins associated with breast cancer were primarily related to tumorigenesis/neoplasia, while CAU unique proteins were involved with growth/metastasis. Using a novel mass spectrometry method, 17 biologically active hormones were measured; estradiol, estriol and 2-methoxyestrone were significantly higher in CAU breast tissue.</p> <p>Conclusions</p> <p>This study details normal premenopausal breast tissue composition, delineates potential mechanisms for breast cancer development, and provides data for further investigation into the role of the microenvironment in cancer disparities.</p

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones

    Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

    Get PDF
    This work was supported by the Leverhulme Trust (Grant number RL2012-025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1 , a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3 , a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1 , to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.Publisher PDFPeer reviewe

    A rare heterozygous TREM2 coding variant identified in familial clustering of dementia affects an intrinsically disordered protein region and function of TREM2

    Get PDF
    Rare coding variants in the triggering receptor expressed on myeloid cells-2 (TREM2) gene have been associated with Alzheimer disease (AD) and homozygous TREM2 loss-of-function variants have been reported in families with monogenic frontotemporal-like dementia with/without bone abnormalities. In a whole-exome sequencing study of a family with probable AD-type dementia without pathogenic variants in known autosomal dominant dementia disease genes and negative for the apolipoprotein E (APOE) ε4 allele, we identified an extremely rare TREM2 coding variant, that is, a glycine-to-tryptophan substitution at amino acid position 145 (NM_018965.3:c.433G>T/p.[Gly145Trp]). This alteration is found in only 1 of 251,150 control alleles in gnomAD. It was present in both severely affected as well as in another putatively affected and one 61 years old as yet unaffected family member suggesting incomplete penetrance and/or a variable age of onset. Gly145 maps to an intrinsically disordered region (IDR) of TREM2 between the immunoglobulin-like and transmembrane domain. Subsequent cellular studies showed that the variant led to IDR shortening and structural changes of the mutant protein resulting in an impairment of cellular responses upon receptor activation. Our results, suggest that a p.(Gly145Trp)-induced structural disturbance and functional impairment of TREM2 may contribute to the pathogenesis of an AD-like form of dementia
    corecore