1,553 research outputs found

    Radio continuum imaging of the R CrA star-forming region with the ATCA

    Get PDF
    The aim of this study is to investigate the nature of radio sources associated with young stellar objects (YSOs) belonging to the R CrA cluster. By combining the centimetre radio data with the wealth of shorter wavelength data accumulated recently we wish to refine estimates of the evolutionary stages of the YSOs. Fluxes and spectral indices for the brightest radio sources were derived from the observations at 3, 6, and 20 cm using the ATCA. Seven of detected sources can be assigned to YSOs, which have counterparts in the X-rays, infrared or submm. One of the YSOs, Radio Source 9, is a Class 0 candidate, and another, IRS 7B, is suggested to be in the Class 0/I transition stage. IRS 7B is associated with extended radio lobes at 6 and 20 cm. The lobes may have a gyrosynchrotron emission component, which could be understood in terms of Fermi accleration in shocks. The Class I objects detected here seem to be a mixed lot. One of these, the wide binary IRS 5, shows a negative spectral index, rapid variability, and a high degree of circular polarisation with V/I≈33V/I\approx33 % on one of the days of observation. These signs of magnetic activity suggest that at least one of the binary components has advanced beyond the Class I stage. The radio source without YSO assigment, Radio Source 5, has been suggested to be a brown dwarf. The radio properties, in particular its persistent strong emission, do not support this classification. The radio characteristics of the detected YSOs roughly agree with the scheme where the dominant emission mechanism changes with age. The heterogeneity of the Class I group can possibly be explained by a drastic decline in the jet activity during this stage, which also changes the efficiency of free-free absorption around the protostar.Comment: Accepted for publication in A&A (8 pages, 4 figures, 4 tables

    Using Open Data to Rapidly Benchmark Biomolecular Simulations : Phospholipid Conformational Dynamics

    Get PDF
    Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin-lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of similar to 1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscope-not only for lipid membranes but for all biomacromolecular systems.Peer reviewe

    Bilateral gluteal metastases from a misdiagnosed intrapelvic gastrointestinal stromal tumor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The location of gastrointestinal stromal tumors (GIST) outside of the gastrointestinal system is a rare event.</p> <p>Case presentation</p> <p>A 56-year old woman presented with a GIST of the pelvis was misdiagnosed and treated as a uterine leiomyosarcoma. The diagnosis was made after the CD117 (KIT) positivity in the biopsy of the excised bowel mass four years from the first presentation. During this period she presented a bilateral muscle and subcutaneous metastasis in the gluteal area.</p> <p>Conclusion</p> <p>The correct diagnosis of the extra-gastrointestinal stromal tumor is a challenge even for experienced pathologists. CD117 (KIT) positivity is the most important immunohistochemical feature in the histological diagnosis. To our knowledge a metastatic EGIST (extra-gastrointestinal stromal tumor) to the skeletal muscle bilaterally has not been described previously in the English medical literature.</p

    Quantitative Comparison against Experiments Reveals Imperfections in Force Fields’ Descriptions of POPC–Cholesterol Interactions

    Get PDF
    Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C–H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches

    Integrative determination of the atomic structure of mutant huntingtin exon 1 fibrils from Huntington's disease

    Get PDF
    Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HttEx1) fragment, whose polyglutamine (polyQ) segment is expanded. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HttEx1 fibrils has remained unknown, limiting diagnostic and treatment efforts. We present and analyze the structure of fibrils formed by polyQ peptides and polyQ-expanded HttEx1. Atomic-resolution perspectives are enabled by an integrative analysis and unrestrained all-atom molecular dynamics (MD) simulations incorporating experimental data from electron microscopy (EM), solid-state NMR, and other techniques. Visualizing the HttEx1 subdomains in atomic detail helps explaining the biological properties of these protein aggregates, as well as paves the way for targeting them for detection and degradation.</p

    CHARACTERISATION AND IN VITRO AND IN VIVO EVALUATION OF SUPERCRITICAL-CO2-FOAMED B-TCP/PLCL COMPOSITES FOR BONE APPLICATIONS

    Get PDF
    Most synthetic bone grafts are either hard and brittle ceramics or paste-like materials that differ in applicability from the gold standard autologous bone graft, which restricts their widespread use. Therefore, the aim of the study was to develop an elastic, highly porous and biodegradable beta-tricalciumphosphate/poly(L-lactide-co-epsilon-caprolactone) (beta-TCP/PLCL) composite for bone applications using supercritical CO2 foaming. Ability to support osteogenic differentiation was tested in human adipose stem cell (hASC) culture for 21 d. Biocompatibility was evaluated for 24 weeks in a rabbit femur-defect model. Foamed composites had a high ceramic content (50 wt%) and porosity (65-67 %). After 50 % compression, in an aqueous environment at 37 degrees C, tested samples returned to 95 % of their original height. Hydrolytic degradation of beta-TCP/PLCL composite, during the 24-week follow-up, was very similar to that of porous PLCL scaffold both in vitro and in vivo. Osteogenic differentiation of hASCs was demonstrated by alkaline phosphatase activity analysis, alizarin red staining, soluble collagen analysis, immunocytochemical staining and qRT-PCR. In vitro, hASCs formed a pronounced mineralised collagen matrix. A rabbit femur defect model confirmed biocompatibility of the composite. According to histological Masson-Goldner's trichrome staining and micro-computed tomography, beta-TCP/PLCL composite did not elicit infection, formation of fibrous capsule or cysts. Finally, native bone tissue at 4 weeks was already able to grow on and in the beta-TCP/PLCL composite. The elastic and highly porous beta-TCP/PLCL composite is a promising bone substitute because it is osteoconductive and easy-to-use and mould intraoperatively.Peer reviewe

    Molecular electrometer and binding of cations to phospholipid bilayers

    Get PDF
    Despite the vast amount of experimental and theoretical studies on the binding affinity of cations -especially the biologically relevant Na+ and Ca2+ - for phospholipid bilayers, there is no consensus in the literature. Here we show that by interpreting changes in the choline headgroup order parameters according to the 'molecular electrometer' concept [Seelig et al., Biochemistry, 1987, 26, 7535], one can directly compare the ion binding affinities between simulations and experiments. Our findings strongly support the view that in contrast to Ca2+ and other multivalent ions, Na+ and other monovalent ions (except Li+) do not specifically bind to phosphatidylcholine lipid bilayers at sub-molar concentrations. However, the Na+ binding affinity was overestimated by several molecular dynamics simulation models, resulting in artificially positively charged bilayers and exaggerated structural effects in the lipid headgroups. While qualitatively correct headgroup order parameter response was observed with Ca2+ binding in all the tested models, no model had sufficient quantitative accuracy to interpret the Ca2+: lipid stoichiometry or the induced atomistic resolution structural changes. All scientific contributions to this open collaboration work were made publicly, using nmrlipids. blogspot.fi as the main communication platform.Peer reviewe
    • …
    corecore