329 research outputs found

    Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

    Get PDF
    We present the results of spectroscopic measurements in the extreme ultraviolet (EUV) regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3-J, 60-ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn8+^{8+}-Sn15+^{15+} ions. The dominant transitions for all ions but Sn8+^{8+} are found to be electric-dipole transitions towards the nn=4 ground state from the core-excited configuration in which a 4pp electron is promoted to the 5ss sub-shell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn laser-produced plasma, which could be employed as a useful tool for diagnostic purposes.Comment: 11 pages, 4 figure

    Characterization of angularly resolved EUV emission from 2-ÎŒm-wavelength laser-driven Sn plasmas using preformed liquid disk targets

    Get PDF
    The emission properties of tin plasmas, produced by the irradiation of preformed liquid tin targets by several-ns-long 2 ”m-wavelength laser pulses, are studied in the extreme ultraviolet (EUV) regime. In a two-pulse scheme, a pre-pulse laser is first used to deform tin microdroplets into thin, extended disks before the main (2 ”m) pulse creates the EUV-emitting plasma. Irradiating 30- to 300 ”m-diameter targets with 2 ”m laser pulses, we find that the efficiency in creating EUV light around 13.5 nm follows the fraction of laser light that overlaps with the target. Next, the effects of a change in 2 ”m drive laser intensity (0.6–1.8 × 1011 W cm−2) and pulse duration (3.7–7.4 ns) are studied. It is found that the angular dependence of the emission of light within a 2% bandwidth around 13.5 nm and within the backward 2π hemisphere around the incoming laser beam is almost independent of intensity and duration of the 2 ”m drive laser. With increasing target diameter, the emission in this 2% bandwidth becomes increasingly anisotropic, with a greater fraction of light being emitted into the hemisphere of the incoming laser beam. For direct comparison, a similar set of experiments is performed with a 1 ”m-wavelength drive laser. Emission spectra, recorded in a 5.5–25.5 nm wavelength range, show significant self-absorption of light around 13.5 nm in the 1 ”m case, while in the 2 ”m case only an opacity-related broadening of the spectral feature at 13.5 nm is observed. This work demonstrates the enhanced capabilities and performance of 2 ”m-driven plasmas produced from disk targets when compared to 1 ”m-driven plasmas, providing strong motivation for the use of 2 ”m lasers as drive lasers in future high-power sources of EUV light

    EUV spectroscopy of Sn5+-Sn(10+)ions in an electron beam ion trap and laser-produced plasmas

    Get PDF
    Emission spectra from multiply-charged Sn5+ –Sn10+ions are recorded from an electron beam ion trap (EBIT) and from laser-produced plasma (LPP) in the extreme ultraviolet range relevant for nanolithographic applications. Features in the wavelength regime between 12.6 and 20.8 nm are studied. Using the Cowan code, emission line features of the charge-state-resolved Sn ion spectra obtained from the EBIT are identified. Emission features from tin LPP either from a liquid micro-droplet or planar solid target are subsequently identified and assigned to specific charge states using the EBIT data. For the planar solid tin target, the 4d–5p transitions of Sn8+ –Sn10+ions are shown to dominate the long-wavelength part of the measured spectrum and transitions of type 4d–4f + 4p–4d are visible in absorption. For the droplet target case, a clear increase in the charge state distribution with increasing laser intensity is observed. This qualitatively demonstrates the potential of using long-wavelength out-of-band emission features to probe the charge states contributing to the strong unresolved transition array at 13.5 nm relevant for nanolithography

    Radiation transport and scaling of optical depth in Nd:YAG laser-produced microdroplet-tin plasma

    Get PDF
    Experimental scaling relations of the optical depth are presented for the emission spectra of a tin-droplet-based, 1-ÎŒm-laser-produced plasma source of extreme-ultraviolet (EUV) light. The observed changes in the complex spectral emission of the plasma over a wide range of droplet diameters (16-65 ÎŒm) and laser pulse durations (5-25 ns) are accurately captured in a scaling relation featuring the optical depth of the plasma as a single, pertinent parameter. The scans were performed at a constant laser intensity of 1.4 × 1011 W/cm2, which maximizes the emission in a 2% bandwidth around 13.5 nm relative to the total spectral energy, the bandwidth relevant for industrial EUV lithography. Using a one-dimensional radiation transport model, the relative optical depth of the plasma is found to linearly increase with the droplet size with a slope that increases with the laser pulse duration. For small droplets and short laser pulses, the fraction of light emitted in the 2% bandwidth around 13.5 nm relative to the total spectral energy is shown to reach high values of more than 14%, which may enable conversion efficiencies of Nd:YAG laser light into - industrially - useful EUV radiation rivaling those of current state-of-the-art CO2-laser-driven sources

    Explicit attention interferes with selective emotion processing in human extrastriate cortex

    Get PDF
    BACKGROUND: Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (~150–300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. RESULTS: Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. CONCLUSION: The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon

    On the Renormalizability of Noncommutative U(1) Gauge Theory - an Algebraic Approach

    Full text link
    We investigate the quantum effects of the nonlocal gauge invariant operator 1D2FΌΜ∗1D2FΌΜ\frac{1}{{}{D}^{2}}{F}_{\mu \nu}\ast \frac{1}{{}{D}^{2}}{F}^{\mu \nu} in the noncommutative U(1) action and its consequences to the infrared sector of the theory. Nonlocal operators of such kind were proposed to solve the infrared problem of the noncommutative gauge theories evading the questions on the explicit breaking of the Lorentz invariance. More recently, a first step in the localization of this operator was accomplished by means of the introduction of an extra tensorial matter field, and the first loop analysis was carried out (Eur.Phys.J.C62:433−443,2009)(Eur.Phys.J.\textbf{C62}:433-443,2009). We will complete this localization avoiding the introduction of new degrees of freedom beyond those of the original action by using only BRST doublets. This will allow us to make a complete BRST algebraic study of the renormalizability of the theory, following Zwanziger's method of localization of nonlocal operators in QFT.Comment: standard Latex no figures, version2 accepted in J. Phys A: Math Theo

    Weyl approach to representation theory of reflection equation algebra

    Full text link
    The present paper deals with the representation theory of the reflection equation algebra, connected with a Hecke type R-matrix. Up to some reasonable additional conditions the R-matrix is arbitrary (not necessary originated from quantum groups). We suggest a universal method of constructing finite dimensional irreducible non-commutative representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed which are parametrized by Young diagrams. The spectrum of central elements s(k)=Tr_q(L^k) is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into the direct sum of irreducible components is also suggested.Comment: LaTeX2e file, 27 pages, no figure

    Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Get PDF
    Keil J, Adenauer H, Catani C, Neuner F. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution. BMC Neuroscience. 2009;10(1):83.Background:The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results: Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion: It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity

    The iron law of democratic socialism: British and Austrian influences on the young Karl Polanyi

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A central thesis of Karl Polanyi's The great transformation concerns the tensions between capitalism and democracy: the former embodies the principle of inequality, while democracy represents that of equality. This paper explores the intellectual heritage of this thesis, in the ‘functional theory’ of G.D.H. Cole and Otto Bauer and in the writings of Eduard Bernstein. It scrutinizes Polanyi's relationship with Bernstein's ‘evolutionary socialism’ and charts his ‘double movement’ vis-à-vis Marxist philosophy: in the 1910s he reacted sharply against Marxism's deterministic excesses, but he then, in the 1920s, engaged in sympathetic dialogue with Austro-Marxist thinkers. The latter, like Bernstein, disavowed economic determinism and insisted upon the importance and autonomy of ethics. Yet they simultaneously predicted a law-like expansion of democracy from the political to the economic arena. Analysis of this contradiction provides the basis for a concluding discussion that reconsiders the deterministic threads in Polanyi's oeuvre. Whereas for some Polanyi scholars these attest to his residual attraction to Marxism, I argue that matters are more complex. While Polanyi did repudiate the more rigidly deterministic of currents in Marxist philosophy, those to which he was attracted, notably Bernstein's ‘revision’ and Austro-Marxism, incorporated a deterministic fatalism of their own, in respect of democratization. Herein lies a more convincing explanation of Polanyi's incomplete escape from a deterministic philosophy of history, as exemplified in his masterwork, The great transformation

    Reciprocal Associations between Parenting Challenges and Parents' Personality Development in Young and Middle Adulthood

    Get PDF
    Having children affects many aspects of people's lives. However, it remains unclear to what degree the challenges that come along with having children are associated with parents' personality development. We addressed this question in two studies by investigating the relationship between parenting challenges and personality development in mothers of newborns (Study 1, N = 556) and the reciprocal associations between (mastering) parenting challenges and personality development in parents of adolescents (Study 2, N = 548 mothers and 460 fathers). In Study 1, we found the stress of having a newborn baby to be associated with declines in maternal Agreeableness, Conscientiousness, and Emotional Stability. Parenting challenges were also related to personality development in parents of adolescent children in Study 2, with parent–child conflict being reciprocally associated with decreases in Conscientiousness and Emotional Stability. Mastering parenting challenges in the form of high parenting self-efficacy, on the other hand, was found to be associated with increases in Agreeableness, Conscientiousness, and Emotional Stability, and vice versa. In sum, our results suggest that mastering the challenges associated with the social role of parenthood is one of the mechanisms underlying personality development in young and middle adulthood
    • 

    corecore