research

Short-wavelength out-of-band EUV emission from Sn laser-produced plasma

Abstract

We present the results of spectroscopic measurements in the extreme ultraviolet (EUV) regime (7-17 nm) of molten tin microdroplets illuminated by a high-intensity 3-J, 60-ns Nd:YAG laser pulse. The strong 13.5 nm emission from this laser-produced plasma is of relevance for next-generation nanolithography machines. Here, we focus on the shorter wavelength features between 7 and 12 nm which have so far remained poorly investigated despite their diagnostic relevance. Using flexible atomic code calculations and local thermodynamic equilibrium arguments, we show that the line features in this region of the spectrum can be explained by transitions from high-lying configurations within the Sn8+^{8+}-Sn15+^{15+} ions. The dominant transitions for all ions but Sn8+^{8+} are found to be electric-dipole transitions towards the nn=4 ground state from the core-excited configuration in which a 4pp electron is promoted to the 5ss sub-shell. Our results resolve some long-standing spectroscopic issues and provide reliable charge state identification for Sn laser-produced plasma, which could be employed as a useful tool for diagnostic purposes.Comment: 11 pages, 4 figure

    Similar works

    Available Versions

    Last time updated on 20/03/2018
    Last time updated on 18/04/2018