328 research outputs found

    Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low sigma_8

    Get PDF
    We use the X-ray power spectrum of the ROSAT all-sky survey in the R6 band (approximately 0.9-1.3 keV) to set an upper limit on the galaxy cluster power spectrum. The cluster power spectrum is modelled with a minimum number of robust assumptions regarding the structure of the clusters. The power spectrum of ROSAT sets an upper limit on the Omega_m-sigma_8 plane which excludes all the models with sigma_8 above sigma_8 = 0.5/(Omega_m^0.38) in a flat LCDM universe. We discuss the possible sources of systematic errors in our conclusions, mainly dominated by the assumed L_x-T relation. Alternatively, this relation could be constrained by using the X-ray power spectrum, if the cosmological model is known. Our conclusions suggest that only models with a low value of sigma_8 (sigma_8 < 0.8 for Omega_m = 0.3) may be compatible with our upper limit. We also find that models predicting lower luminosities in galaxy clusters are favoured. Reconciling our cosmological constraints with these arising by other methods might require either a high entropy floor or wide-spread presence of cooling flows in the low-redshift clusters.Comment: 14 pages, 19 plots (2 as gif files). MNRAS submitte

    Constraining the Lifetime of Quasars from their Spatial Clustering

    Full text link
    The lifetime t_Q of the luminous phase of quasars is constrained by current observations to be between 10^6 and 10^8 years, but is otherwise unkown. We model the quasar luminosity function in detail in the optical and X-ray bands using the Press-Schechter formalism, and show that the expected clustering of quasars depends strongly on their assumed lifetime. We quantify this dependence, and find that existing measurements of the correlation length of quasars are consistent with the range 10^6 < t_Q < 10^8 years. We then show that future measurements of the power spectrum of quasars out to z=3, from the 2dF or Sloan Digital Sky Survey, can significantly improve this constraint, and in principle allow a precise determination of t_Q. We estimate the systematic errors introduced by uncertainties in the modeling of the quasar-halo relationship, as well as by the possible existence of obscured quasars.Comment: ApJ, in press (emulateapj

    Constraints on the distribution of absorption in the X-ray selected AGN population found in the 13H XMM-Newton/Chandra deep field

    Full text link
    We present an analysis of the X-ray properties of sources detected in the 13H XMM-Newton deep (200ks) field. In order to constrain the absorbed AGN population, we use extensive Monte Carlo simulations to directly compare the X-ray colours of observed sources with those predicted by several model distributions. We have tested the simplest form of the AGN unified scheme, whereby the intrinsic XLF of absorbed AGN is set to be the same as that of their unabsorbed brethren, coupled with various model distributions of absorption. The best fitting of these models sets the fraction of AGN with absorbing column NH, proportional to (logNH)^8. We have also tested two extensions to the unified scheme: an evolving absorption scenario, and a luminosity dependent model distribution. Both of these provide poorer matches to the observed X-ray colour distributions than the best fitting simple unified model. We find that a luminosity dependent density evolution XLF reproduces poorly the 0.5-2 keV source counts seen in the 13H field. Field to field variations could be the cause of this disparity. Computing the simulated X-ray colours with a simple absorbed power-law + reflection spectral model is found to over-predict, by a factor of two, the fraction of hard sources that are completely absorbed below 0.5 keV, implying that an additional source of soft-band flux must be present for a number of the absorbed sources. Finally, we show that around 40% of the 13H sample are expected to be AGN with NH>10^22 cm^-2.Comment: 13 pages, 9 figures, Accepted for publication in MNRA

    The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

    Full text link
    With a view to understanding the formation of double neutron-stars (DNS), we investigate the late stages of evolution of helium stars with masses of 2.8 - 6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and spiral-in phase due to the development of a convective helium envelope. If the neutron star has sufficient time to complete the spiraling-in process before the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d) with a merger timescale of the order of 1 Myr or less. These systems would have important consequences for the detection rate of GWR and for the understanding of GRB progenitors. On the other hand, if the time left until the explosion is shorter than the orbital-decay timescale, the system will undergo a SN explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through CE evolution. The remnants of these massive helium stars are DNSs with periods in the range of 0.1 - 1 d. This suggests that this range of mass includes the progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12, respectively) must have been imparted at the birth of the pulsar's companion. The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced from helium star-neutron star binaries which avoid RLOF, with the helium star more massive than 2.5 Msun. For these systems the minimum kick velocities are 50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA

    The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium

    Get PDF
    We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at 1.4z1.71.4\lesssim z\lesssim1.7, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range 109.6M/M1011.610^{9.6} \lesssim M_\ast/M_\odot \lesssim 10^{11.6} with those at M>1011 MM_\ast>10^{11}~M_\odot being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density (ne=220130+170 cm3n_e=220^{+170}_{-130}~\mathrm{cm^{-3}}), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies (M1011 MM_\ast\gtrsim10^{11}~M_\odot) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.Comment: 38 pages; Accepted for publication in Ap

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    A Classic Type 2 QSO

    Get PDF
    In the Chandra Deep Field South 1Msec exposure we have found, at redshift 3.700 +- 0.005, the most distant Type 2 AGN ever detected. It is the source with the hardest X-ray spectrum with redshift z>3. The optical spectrum has no detected continuum emission to a 3sigma detection limit of ~3 10^{-19} ergs/s/cm^2/AA and shows narrow lines of Ly_alpha, CIV, NV, HeII, OVI, [OIII], and CIII]. Their FWHM line widths have a range of ~700-2300 km/s with an average of approximately ~1500 km/s. The emitting gas is metal rich (Z ~2.5-3 Z_solar). In the X-ray spectrum of 130 counts in the 0.5-7 keV band there is evidence for intrinsic absorption with N_H > 10^{24} cm^{-2}. An iron K_alpha line with rest frame energy and equivalent width of ~6.4 keV and ~1 keV, respectively, in agreement with the obscuration scenario, is detected at a 2sigma level. If confirmed by our forthcoming XMM observations this would be the highest redshift detection of FeK_alpha. Depending on the assumed cosmology and the X-ray transfer model, the 2-10 keV rest frame luminosity corrected for absorption is ~10^{45 +- 0.5} ergs/s, which makes our source a classic example of the long sought Type 2 QSOs. From standard population synthesis models, these sources are expected to account for a relevant fraction of the black-hole-powered QSO distribution at high redshift.Comment: 24 LaTeX pages including 6 postscript figures. Revised version, accepted by Ap

    Ultr-Luminous Infrared Galaxies: QSOs in Formation?

    Full text link
    We present new near-infrared Keck and VLT spectroscopic data on the stellar dynamics in late stage, ultra-luminous infrared galaxy (ULIRG) mergers . We now have information on the structural and kinematic properties of 18 ULIRGs, 8 of which contain QSO-like active galactic nuclei. The host properties (velocity dispersion, effective radius, effective surface brightness, M_K) of AGN-dominated and star formation dominated ULIRGs are similar. ULIRGs fall remarkably close to the fundamental plane of early type galaxies. They populate a wide range of the plane, are on average similar to L*-rotating ellipticals, but are well offset from giant ellipticals and optically/UV bright, low-z QSOs/radio galaxies. ULIRGs and local QSOs/radio galaxies are very similar in their distributions of bolometric and extinction corrected near-IR luminosities, but ULIRGs have smaller effective radii and velocity dispersions than the local QSO/radio galaxy population. Hence, their host masses and inferred black hole masses are correspondingly smaller. The latter are more akin to those of local Seyfert galaxies. ULIRGs thus resemble local QSOs in their near-IR and bolometric luminosities because they are (much more) efficiently forming stars and/or feeding their black holes, and not because they have QSO-like, very massive black holes. We conclude that ULIRGs as a class cannot evolve into optically bright QSOs. They will more likely become quiescent, moderate mass field ellipticals or, when active, might resemble the X-ray bright, early type galaxies that have recently been found by the Chandra Observatory.Comment: accepted to be published in ApJ, 7 figure

    Chandra Detection of a TypeII Quasar at z=3.288

    Get PDF
    We report on observations of a TypeII quasar at redshift z=3.288, identified as a hard X-ray source in a 185 ks observation with the Chandra X-ray Observatory and as a high-redshift photometric candidate from deep, multiband optical imaging. CXOJ084837.9+445352 (hereinafter CXO52) shows an unusually hard X-ray spectrum from which we infer an absorbing column density N(H) = (4.8+/-2.1)e23 / cm2 (90% confidence) and an implied unabsorbed 2-10 keV rest-frame luminosity of L(2-10) = 3.3e44 ergs/s, well within the quasar regime. Hubble Space Telescope imaging shows CXO52 to be elongated with slight morphological differences between the WFPC2 F814W and NICMOS F160W bands. Optical and near-infrared spectroscopy of CXO52 show high-ionization emission lines with velocity widths ~1000 km/s and flux ratios similar to a Seyfert2 galaxy or radio galaxy. The latter are the only class of high-redshift TypeII luminous AGN which have been extensively studied to date. Unlike radio galaxies, however, CXO52 is radio quiet, remaining undetected at radio wavelengths to fairly deep limits, f(4.8GHz) < 40 microJy. High-redshift TypeII quasars, expected from unification models of active galaxies and long-thought necessary to explain the X-ray background, are poorly constrained observationally with few such systems known. We discuss recent observations of similar TypeII quasars and detail search techniques for such systems: namely (1) X-ray selection, (2) radio selection, (3) multi-color imaging selection, and (4) narrow-band imaging selection. Such studies are likely to begin identifying luminous, high-redshift TypeII systems in large numbers. We discuss the prospects for these studies and their implications to our understanding of the X-ray background.Comment: 28 pages, 5 figures; to appear in The Astrophysical Journa
    corecore