312 research outputs found

    Persistent warm and cold spells in the Northern Hemisphere extratropics: regionalisation, synoptic-scale dynamics and temperature budget

    Get PDF
    Persistent warm and cold spells are often high-impact events that may lead to significant increases in mortality and crop damage and can put substantial pressure on the power grid. Taking their spatial dependence into account is critical to understand the associated risks, whether in present-day or future climates. Here, we present a novel regionalisation approach of 3-week warm and cold spells in winter and summer across the Northern Hemisphere extratropics based on the association of the warm and cold spells with large-scale circulation. We identify spatially coherent but not necessarily connected regions where spells tend to co-occur over 3-week timescales and are associated with similar large-scale circulation patterns. We discuss the physical drivers responsible for persistent extreme temperature anomalies. Cold spells systematically result from northerly cold advection, whereas warm spells are caused by either adiabatic warming (in summer) or warm advection (in winter). We also discuss some key mechanisms contributing to the persistence of temperature extremes. Blocks are important upper-level features associated with such events – co-localised blocks for persistent summer warm spells in the northern latitudes; downstream blocks for winter cold spells in the eastern edges of continental landmasses; and upstream blocks for winter cold spells in Europe, northwestern North America and east Asia. Recurrent Rossby wave patterns are also relevant for cold and warm spell persistence in many mid-latitude regions, in particular in central and southern Europe. Additionally, summer warm spells are often accompanied by negative precipitation anomalies that likely play an important role through land–atmosphere feedbacks.</p

    Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature?

    Get PDF
    A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km<sup>2</sup>) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. <br><br> The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day<sup>-1</sup>) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. <br><br> By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. <br><br> Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur

    Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe

    Get PDF
    Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. Of particular interest is the subseasonal-to-seasonal (S2S) prediction timescale. The S2S prediction timescale has received increasing attention in the research community because of its importance for many sectors. However, very few forecast skill assessments of precipitation extremes in S2S forecast data have been conducted. The goal of this article is to assess the forecast skill of rare events, here extreme precipitation, in S2S forecasts, using a metric specifically designed for extremes. We verify extreme precipitation events over Europe in the S2S forecast model from the European Centre for Medium-Range Weather Forecasts. The verification is conducted against ERA5 reanalysis precipitation. Extreme precipitation is defined as daily precipitation accumulations exceeding the seasonal 95th percentile. In addition to the classical Brier score, we use a binary loss index to assess skill. The binary loss index is tailored to assess the skill of rare events. We analyze daily events that are locally and spatially aggregated, as well as 7 d extreme-event counts. Results consistently show a higher skill in winter compared to summer. The regions showing the highest skill are Norway, Portugal and the south of the Alps. Skill increases when aggregating the extremes spatially or temporally. The verification methodology can be adapted and applied to other variables, e.g., temperature extremes or river discharge.</p

    Event selection for dynamical downscaling: a neural network approach for physically-constrained precipitation events

    Get PDF
    This study presents a new dynamical downscaling strategy for extreme events. It is based on a combination of statistical downscaling of coarsely resolved global model simulations and dynamical downscaling of specific extreme events constrained by the statistical downscaling part. The method is applied to precipitation extremes over the upper Aare catchment, an area in Switzerland which is characterized by complex terrain. The statistical downscaling part consists of an Artificial Neural Network (ANN) framework trained in a reference period. Thereby, dynamically downscaled precipitation over the target area serve as predictands and large-scale variables, received from the global model simulation, as predictors. Applying the ANN to long term global simulations produces a precipitation series that acts as a surrogate of the dynamically downscaled precipitation for a longer climate period, and therefore are used in the selection of events. These events are then dynamically downscaled with a regional climate model to 2 km. The results show that this strategy is suitable to constraint extreme precipitation events, although some limitations remain, e.g., the method has lower efficiency in identifying extreme events in summer and the sensitivity of extreme events to climate change is underestimated

    How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements

    Get PDF
    Measuring the properties of hailstorms is a difficult task due to the rarity and mainly small spatial extent of the events. Especially, hail observations from ground-based time-recording instruments are scarce. We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The main benefits of the sensors are the live recording of the hailstone kinetic energy and the precise timing of the impacts. Its potential limitations include a diameter-dependent dead time, which results in less than 5 % of missed impacts, and the possible recording of impacts that are not due to hail, which can be filtered using a radar reflectivity filter. We assess the robustness of the sensors' measurements by doing a statistical comparison of the sensor observations with hailpad observations, and we show that, despite their different measurement approaches, both devices measure the same hail size distributions. We then use the timing information to measure the local duration of hail events, the cumulative time distribution of impacts, and the time of the largest hailstone during a hail event. We find that 75 % of local hailfalls last just a few minutes (from less than 4.4 min to less than 7.7 min, depending on a parameter to delineate the events) and that 75 % of the impacts occur in less than 3.3 min to less than 4.7 min. This time distribution suggests that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.</p

    Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868

    Get PDF
    Heavy precipitation on the south side of the central Alps produced a catastrophic flood in October 1868. We assess the damage and societal impacts, as well as the atmospheric and hydrological drivers using documentary evidence, observations and novel numerical weather and runoff simulations.The greatest damage was concentrated close to the Alpine divide and Lago Maggiore. An atmospheric reanalysis emphasizes the repeated occurrence of streamers of high potential vorticity as precursors of heavy precipitation. Dynamical downscaling indicates high freezing levels (4000&thinsp;m&thinsp;a.s.l.), extreme precipitation rates (max. 270&thinsp;mm&thinsp;24&thinsp;h−1) and weather dynamics that agree well with observed precipitation and damage, and with existing concepts of forced low-level convergence, mid-level uplift and iterative northeastward propagation of convective cells. Simulated and observed peak levels of Lago Maggiore differ by 2&thinsp;m, possibly because the exact cross section of the lake outflow is unknown. The extreme response of Lago Maggiore cannot be attributed to low forest cover. Nevertheless, such a paradigm was adopted by policy makers following the 1868 flood, and used to implement nationwide afforestation policies and hydraulic structures.These findings illustrate the potential of high-resolution, hydrometeorological models – strongly supported by historical methods – to shed new light on weather events and their socio-economic implications in the 19th century.</p
    • …
    corecore