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Abstract This study presents a new dynamical downscaling strategy for ex-8

treme events. It is based on a combination of statistical downscaling of coarsely9

resolved global model simulations and dynamical downscaling of specific ex-10

treme events constrained by the statistical downscaling part. The method is11

applied to precipitation extremes over the upper Aare catchment, an area in12

Switzerland which is characterized by complex terrain. The statistical down-13

scaling part consists of an Artificial Neural Network (ANN) framework trained14

in a reference period. Thereby, dynamically downscaled precipitation over the15

target area serve as predictands and large-scale variables, received from the16

global model simulation, as predictors. Applying the ANN to long term global17

simulations produces a precipitation series that acts as a surrogate of the dy-18

namically downscaled precipitation for a longer climate period, and therefore19

are used in the selection of events. These events are then dynamically down-20

scaled with a regional climate model to 2 km. The results show that this21

strategy is suitable to constraint extreme precipitation events, although some22

limitations remain, e.g., the method has lower efficiency in identifying extreme23

events in summer and the sensitivity of extreme events to climate change is24

underestimated.25
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1 Introduction26

Extreme precipitation is a necessary precursor for flooding, which can cause27

high economic and human losses in densely populated areas. Extremely rare28

events are characterized by long return periods (Salvadori et al 2011), and are29

used for risk assessments of critical infrastructure that requires special protec-30

tion, such as nuclear power plants or dams (Requena et al 2013). Moreover,31

extreme events may be affected by climate change, as pointed out by growing32

evidence that relates climate change with an intensification in the frequency33

and severity of extreme episodes (Seneviratne et al 2012). However, an impor-34

tant challenge in the characterisation of the risks associated with these events35

is that they are, by definition, extremely rare. Given the relatively short in-36

strumental records of rainfall, the characterisation of extremes whose return37

period exceeds centuries is affected by large uncertainties.38

A prominent way to tackle this problem is through climate modelling.39

Large ensembles of simulations carried out with comprehensive Earth System40

models (ESM) (e.g. CMIP6, Eyring et al 2016) provide a valuable source of41

information about the evolution of the hydrological cycle for the future. How-42

ever, climate models only contain a simplified representation of precipitation43

processes, and one of the prominent drawbacks of state-of-the-art ESMs is44

their coarse spatial resolution, that limits their applicability in impact stud-45

ies at local scales (e.g., Messmer et al 2017; Garćıa-Valdecasas Ojeda et al46

2017; Felder et al 2018). For this reason, the output of ESMs is brought to47

a higher spatial resolution using either statistical or dynamical downscaling48
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methods (Maraun et al 2010, 2015). For dynamical downscaling, Regional Cli-49

mate Models (RCM) are run over a limited spatial domain at a higher spatial50

resolution (e.g. Torma et al 2015; Fantini et al 2016; Giorgi et al 2016; Gómez-51

Navarro et al 2018, among many others). However, the computational cost52

of such regional simulations is still considerably high. This has motivated the53

development of hybrid approaches that take advantage of statistical relation-54

ships to extend the results drawn from short RCM simulations over longer55

time periods. Martinez et al (2012) developed a statistical-dynamical down-56

scaling procedure that relies on Empirical Orthogonal Function analysis to57

generate large-scale atmospheric patterns, which are then dynamically down-58

scaled. This allowed the researchers to construct regional time series, and was59

successfully used to generate realistic regional series of wind with 6-hour res-60

olution. Li et al (2011) used a limited number of existing RCM simulations61

over North America to fit a linear regression model between the RCM output62

and the driving ESM fields. This statistical model was then used, together63

with a large set of ESM simulations, to produce a probabilistic projection of64

high-resolution temperature change in North America, which even allowed the65

researchers to quantify the different sources of uncertainty.66

Within the RCM community, large on-going initiatives such as The Co-67

ordinated Regional Climate Downscaling Experiment (CORDEX) have been68

formed to coordinate the computational effort, therefore facilitating and max-69

imising the exchange of information derived from these costly simulations.70

Nowadays, the resolution in most RCM simulations is about 10 km (e.g.,71
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https://guidelines.euro-cordex.net). This resolution is sufficient to demonstrate72

the added value of RCM compared to ESM simulations, especially regarding73

precipitation processes (Torma et al 2015; Fantini et al 2016; Bowden et al74

2016). However, there exists added value of going beyond 10 km, entering the75

scale of convection permitting simulations (Ban et al 2014; Giorgi et al 2016;76

Zittis et al 2017; Gómez-Navarro et al 2018), in particular in areas of com-77

plex topography and during extreme precipitation events (Giorgi et al 2016;78

Chan et al 2017). Still, the high computational cost is the bottleneck that has79

limited the number of simulations currently available of this nature, and it80

may become an unavoidable limitation precluding the RCM community from81

taking full advantage of the new CMIP6 ensemble.82

To overcome this limitation, some researchers have proposed to make a83

previous selection of dates to be simulated to avoid the computational cost of84

running transient climate simulations. Meredith et al (2018) presented a classi-85

fication algorithm based on geopotential height as a mean to select dates with86

an elevated potential for extreme precipitation in a narrow river catchment.87

This approach enables a clever selection of events to be dynamically down-88

scaled that discards situations of fewer interest, and so high-resolution RCM89

simulations can be selectively performed saving important computational re-90

sources. Felder et al (2018) aimed at simulating worst-case events using a range91

of computational models across spatial scales, from an ESM to a damage and92

loss model reaching the scale of individual buildings. To keep the physical93

consistency among models, the research team selected events within the ESM,94
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using the extreme precipitation (averaged over Switzerland) as criterion and95

dynamically downscaled these events to 2 km. The analysis of the downscaled96

events showed that this criterion leads to unsatisfactory results, and suggested97

that any refinement of the approach shall include more variables from the ESM98

used as predictors. Chan et al (2017) selected three large-scale predictors of99

extreme precipitation: Mean Sea Level Pressure, 850-hPa relative vorticity and100

static stability. They used regression analysis to identify large-scale precursors101

of extreme precipitation events in convection-permitting climate simulations,102

and found that indeed these three variables have skill in predicting precipita-103

tion extremes in simulations both at 12 and 1.5 km spatial resolution.104

In general, good predictor variables should include the main processes con-105

tributing to heavy precipitation on a scale that is captured by the ESM. Heavy106

and extreme precipitation requires a steady supply of moisture and a lifting107

mechanism that brings the moist air to saturation (e.g., Doswell et al 1996). In108

Switzerland moisture is transported towards the Alps from the south prior to109

and during regional-scale heavy precipitation events on the Alpine south side110

(Martius et al 2006; Winschall et al 2012). During regional-scale heavy precip-111

itation on the Alpine north side, sustained and intensive moisture transport112

against the orography can occur from the east during Vb weather situations,113

from the north and from the west (Piaget et al 2015; Giannakaki and Mar-114

tius 2016; Froidevaux and Martius 2016; Messmer et al 2017). The moist air115

masses reaching Switzerland are lifted within warm convey belts (Pfahl et al116
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2014), along the orography (Giannakaki and Martius 2016), or in areas of flow117

convergence (Giannakaki and Martius 2016).118

Here, we propose a comprehensive and flexible framework that blends sta-119

tistical and dynamical downscaling and, similarly as the one presented by120

Meredith et al (2018), it provides a suitable identification of candidates to121

be local extreme precipitation events in long ESM simulations. As tested for122

this method, we use it to forecast daily extreme precipitation in a region of123

complex orography, i.e. the catchment of the Aare river upstream of Bern124

(Switzerland).125

2 Data and Methods126

2.1 Community Earth System Model (CESM)127

The Community Earth System Model (CESM, 1.0.1 release; Hurrell et al 2013)128

was developed at the National Center for Atmospheric Research. This ESM129

has been run with a horizontal resolution of about 1◦ (about 110 km in the130

equator) in all physical model components, i.e. atmosphere, ocean, land and131

sea ice (Gent et al 2011). Further, the carbon cycle was explicitly simulated.132

The reader interested in the full details of this particular model configuration133

is referred to Lehner et al (2015) for a comprehensive description.134

We use data from two CESM simulations: i) a 400-year simulation with135

perpetual AD 850 conditions, hereafter referred as CESM-control simulation,136

ii) a seamless 850-2099 AD simulation driven by reconstructions of external137
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forcings for the historical period 850-2005 and RCP8.5 forcing for the future138

period 2006-2099 (Lehner et al 2015). In this study, we use this data but139

consider it as split in two periods: 1850-2005, hereafter referred as CESM-140

historical simulation, and 2006-2099, hereafter CESM-future simulation.141

2.2 Weather Research and Forecasting Model (WRF)142

The dynamical downscaling of the CESM simulations is performed with the143

Weather Research and Forecasting model (WRF), version 3.5 (Skamarock et al144

2008). We use a setup with 4 nested domains reaching a spatial resolution of145

2 km in its innermost domain spanning the Alpine region entirely (see Fig.146

1). This high resolution allows us to explicitly simulate convective processes,147

which is of foremost importance in extreme event phenomena, precisely those148

that this study tackles (Ban et al 2014; Giorgi et al 2016). A comprehensive149

description of the details of these simulations, as well as an evaluation of the150

model performance in the particular configuration employed in this study is151

presented in Gómez-Navarro et al (2018).152

The simulations performed with WRF include i) a transient present-climate153

simulation that continuously spans the period 1979-2005 and is driven by the154

CESM-historical simulation, hereafter referred as WRF-reference period; ii) a155

transient simulation over the period 2080-2099 nested to CESM-future simu-156

lation, hereafter WRF-future; iii) a number of single-day case studies selected157

from the CESM-control, CESM-historical and CESM-future simulations. The158
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Fig. 1 Top: configuration of the four nested domains used to downscale CESM with WRF.

Bottom: detail of the actual orography implemented in the 2-km resolution simulation over

Switzerland. The black contour outlines the target of the study, the catchment of the Aare

river upstream of Bern.

criteria for the selection of dates is described below, and in each case a short159

spinup of 12 hours is used.160

2.3 Artificial Neural Networks as Statistical Downscaling Tool161

An ANN is a mathematical model that acts as a function, relating certain n-162

dimensional input vectors to m-dimensional output vectors (Schalkoff 1997).163

This model is not new in meteorological applications. Dawson and Wilby164

(1998) proposed a novel rainfall-runoff model based on ANNs, and used it165

to forecast the river flow in two different UK catchments with a skill compara-166
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ble to operational systems. Lee et al (1998) used an ANN to build a model to167

forecast precipitation in Switzerland, a region characterised by complex orog-168

raphy. ANNs have also found early applications as downscaling technique in169

a very similar manner as we aim here (Zorita and Storch 1999). The reader170

is referred to the former references for a more comprehensive explanation of171

the algorithm, as we just briefly outline its most important aspects in the172

following.173

An ANN is composed of various layers, each of which contains so-called174

neurons, that can be regarded as computation units. A network contains at175

least an input layer (with n neurons, the dimension of the input vector) and an176

output layer (with m neurons, the dimension of the output vector). In between,177

there can be a number of so-called hidden layers, each of which including178

a variable number of neurons. Each neuron is connected to all neurons in179

the following layers through connections that are characterised by a weight.180

Given an input, the network calculates a unique output that results from a181

relatively simple and therefore computationally inexpensive calculation that182

involves the input vector and all the weights, which act as the parameters of183

the model. Therefore, the calibration of the network consists of finding the set184

of weights that optimise the output of the network for a given metric. We use185

supervised learning, in which the training of the network consists of using a186

number of input-output couples from the reference period, i.e. the predictors187

and the predictand, to find the set of weights that minimise the difference188

between the transient RCM and the output of the ANN, averaged for the189
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whole pool of samples that conform the reference period. The search of an190

optimal solution is computationally moderately demanding, and is based on191

the backward propagation algorithm, that can be viewed as an application of192

the chain rule in differentiation (Schalkoff 1997).193

The performance of the ANN approach to select events is based on a num-194

ber of skill metrics: correlation, Hit Rate and Symmetric Extremal Dependence195

Index (SEDI), comprehensively described in the Appendix. Note that the truth196

we aim at reproduce with the help of an ANNs is not the actual precipitation,197

but the one produced by the CESM-WRF system. Therefore, ”observation”198

refers hereafter to the daily precipitation simulated by WRF averaged over199

the Aare catchment upstream of Bern, whereas ”prediction” refers to the out-200

put of an ANN once it is trained during the reference period to mimic the201

CESM-RCM relationships over such region.202

Finally, we use the ANN from the R package neuralnet (https://CRAN.R-203

project.org/package=neuralnet). The geometry of the network and the num-204

ber of variables used as input predictors for the ANN are not part of the205

calibration, but have to be determined beforehand, according to a number of206

comprehensive tests described in section 3.2.207

2.4 Strategy for the Selection of Events208

This work proposes a strategy for the selection of dates candidate to extreme209

event that consists of the following steps (Fig. 2):210
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1. The coarse fields from an ESM are dynamically downscaled with an RCM.211

This is a computationally demanding step, so this reference period is in-212

admissibly short for most climate applications.213

2. An ANN is trained to learn the relationship between the large-scale vari-214

ables in the ESM and the daily precipitation simulated by the RCM in an215

orographycally complex region.216

3. The calibration and validation periods are swapped to carefully assess the217

performance of the ANN with independent data during the reference pe-218

riod.219

4. Finally, the calibrated ANN can be used to statistically downscale a longer220

ESM simulation. This way, the ANN tries to emulate the series we would221

obtain running the RCM for the longer period in case it would be com-222

putationally feasible. This series shall be used in the selection of dates223

candidates to extreme events.224

To demonstrate the feasibility of this approach, we implement it in the225

following sections. We use the WRF-reference simulation comprehensively de-226

scribed in Gómez-Navarro et al (2018). The arguments for the selection of227

predictors are presented in Sec. 3.1, followed by a range of tests that allow228

to determine the optimal ANN geometry in Sec. 3.2. A comprehensive cali-229

bration using various statistics associated to the forecast of extreme events is230

presented in Sec. 3.3. Finally, in Sec. 4 we apply the obtained ANN during a231

perturbed climate period the ANN was not calibrated for. This allows us to232
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Fig. 2 Scheme of the different steps to obtain a tool for the selection of dates candidates

to extreme events. First, a computationally extensive high-resolution simulation is carried

out over the domain of interest during a reference period. Next, the dynamically downscaled

dataset, together with the driving ESM, are used to calibrate an ANN. Only half of the

reference period is used for the calibration, as the other half is reserved for validation of the

ANN against the RCM data (this is symbolised with the white/grey shading). The role of

the calibration and validation periods is exchanged to ensure a correct validation. Finally,

the calibrated ANN is applied to obtain a statistically downscaled series over a longer period

that serves for the selection of events.

assess the limitations derived from the stationary hypothesis implicit in many233

statistical downscaling exercises.234
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3 Event selection based on ANN during the reference period235

3.1 Large scale variables – potential predictors of extreme events236

Similarly to Chan et al (2017), we first gain insight on how local extreme237

events in precipitation over the Aare catchment (bottom panel in Fig. 1) are238

connected to the large scale atmospheric dynamics in the WRF-CESM cou-239

pled system. For this, we use a composite analysis applied to different variables240

using the 1-day extreme precipitation events, defined here as those days ex-241

ceeding the 95th percentile of daily precipitation and applied to each season242

separately. All days in the WRF-reference simulation are filtered out accord-243

ing to this criterion and then averaged. The selection of the variables is based244

on previous studies (Martius et al 2006; Winschall et al 2012; Messmer et al245

2017): sea level pressure (SLP), geopotential height at 850 and 500 hPa (Z850246

and Z500), integrated water vapour and vapour transport (IWV and IWVT,247

respectively) and precipitation (PREC). The annual cycle is removed from248

each variable to obtain anomalies. Note that one limitation of this analysis249

is that these composites reflect the mean large-scale flow patterns. Thus, for250

individual events the large-scale flow and the moisture transport can substan-251

tially deviate from these composites as presented by Giannakaki and Martius252

(2016) who identified several relevant flow patterns associated with heavy pre-253

cipitation events in Northern Switzerland.254

Composites for selected variables for winter are presented in Fig. 3. Ex-255

treme daily precipitation events are related to a west-east oriented pressure256
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anomaly dipole with high pressure centred between the Iberian Peninsula and257

the Bay of Biscay and low pressure over eastern Europe (Fig. 3a). This pres-258

sure dipole has a barotropic vertical structure (Fig. 3b). The height thickness259

between 500-hPa and 850-hPa, a measure of temperature anomalies in this260

layer, indicates a dipole with warmer air over western and colder air over east-261

ern Europe (Fig. 3c). The strongest pressure gradient is located over Germany262

and Switzerland and suggests strong north to northwesterly winds over this263

region. Consistently extreme daily precipitation events in winter are associ-264

ated with a strong north to northwesterly integrated water vapour transport265

(Fig. 3e). As expected, CESM generates a positive precipitation anomaly over266

Switzerland when sampling over extreme precipitation events in the WRF267

simulation (Fig. 3d). The autumn patterns (not shown) resemble the winter268

ones while the spring ones are rotated counter clockwise by 10 degrees with269

respect to the winter pattern for all but the precipitation pattern (therefore270

not shown).271

The corresponding composites for summer are shown in Fig. 4. Extreme272

daily precipitation events are associated with a surface low pressure system273

centred over Austria and the Czech Republic. At 500 hPa, two low pressure274

minima are found. A stronger one located over northern France and a weaker275

one over south-eastern Europe. The thickness between 500-hPa and 850-hPa276

shows warm air over western Europe, whereas over the British Isles and eastern277

Europe a cold anomaly is present (Fig. 4c). The moisture fluxes over Switzer-278

land are weaker than in winter, and the main source of humidity in these279
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situations is the Mediterranean Sea, in good agreement with results of Mess-280

mer et al (2017). A positive precipitation anomaly is found over Switzerland281

in the ESM (Fig. 4d), which again shows the link between the precipitation282

simulated by the RCM and its driving dataset, i.e. the relationship exploited283

by Felder et al (2018).284

In summary, we find that extreme precipitation events identified in the285

WRF simulation are related to large scale circulation patterns of the driving286

CESM simulation. The flow patterns vary depending on the season. In winter287

(and similarly for autumn and spring) a west east dipole pattern with low288

pressure at the east becomes an important predictor of extreme events. In289

summer a low pressure system centred over Austria and the Czech Republic290

indicates a so-called Vb-cyclone situation (e.g., van Bebber 1891; Stucki et al291

2012; Messmer et al 2015, 2017). This information is used below to define292

meteorological indices that are exploited by the ANN.293

3.2 Network geometry and predictor variables294

Once the variables candidate to be used as predictors are identified, we need to295

determine the geometry of the ANN, which includes the number of variables296

considered, but also the number and size of neurons in the hidden layers.297

The geometry of an ANN used in this study consists of an input, an output298

and a single hidden layer. The output layer of the model is the predictand,299

and consists of a single number, i.e. the daily mean precipitation in the Aare300

catchment. Thus, we need a single neuron in the output layer. The input layer301
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Fig. 3 Composite analysis for extreme 1-day precipitation events for winter, i.e. DJF

months: (a) Sea level pressure, (b) 500-hPa geopotential height, (c) difference between 500-

hPa and 850-hPa geopotential height, (d) precipitation and (e) water vapour transport

vertically integrated up to 700 hPa.

contains the predictors, and has as many neurons as the number of variables302

considered for the downscaling. For the sake of simplicity, we set one single303

hidden layer, whose size is variable. Its number of neurons is not determined304

arbitrarily, but exhaustive tests are carried out to identify in each season the305



18 Gómez-Navarro et al.

30W

30W

20W

20W

10W

10W

0

0

10E

10E

20E

20E

30E

30E

40E

40E

50E

50E

30N

40N

50N

−9 −7 −5 −3 −1 1 3 5 7 9

SLP (hPa)

SLPa)

30W

30W

20W

20W

10W

10W

0

0

10E

10E

20E

20E

30E

30E

40E

40E

50E

50E

30N

40N

50N

−0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

DZ (x100 gpm)

Z500b)

30W

30W

20W

20W

10W

10W

0

0

10E

10E

20E

20E

30E

30E

40E

40E

50E

50E

30N

40N

50N

−45 −35 −25 −15 −5 5 15 25 35 45

∆Z (gpm)

Z500−Z850c)

30W

30W

20W

20W

10W

10W

0

0

10E

10E

20E

20E

30E

30E

40E

40E

50E

50E

30N

40N

50N

−9 −7 −5 −3 −1 1 3 5 7 9

Prec (mm/day)

PRECd)

30W

30W

20W

20W

10W

10W

0

0

10E

10E

20E

20E

30E

30E

40E

40E

50E

50E

30N 30N

40N 40N

50N 50N

0 25 50 75 100 125 150 175 200 225 250

IWVT (kg m s−1)

IWVTe)

Fig. 4 As Fig. 3 but for summer, i.e. JJA months.

optimal number of neurons of the hidden layer that yields the highest skill of306

the ANN (steps 1 and 2 in Fig. 5).307

A number of variables obtained from the ESM are considered as input for308

the network. The full list is shown in Table 1, and is based on previous lit-309

erature (e.g., Martius et al 2006; Chan et al 2017) as well as the composite310

analysis described in Sec. 3.1 (note that we use different variables according to311

each season). Although in principle all variables are considered by the model312
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to avoid prejudges and gain in generality, a first test allows to stablish which313

variables seem more closely related to the output variable, i.e., precipitation314

over the Aare catchment (see diagram labelled 1 in Fig. 5). To do so, each vari-315

able is used separately to build a simple ANN where it is the only input, and316

a single neuron exists in the hidden layer. In each case, the ANN is calibrated317

using half of the reference period, i.e. 1979-1992, and the fitted ANN is used318

to produce a prediction for the other half, i.e. 1993-2005. This is then com-319

pared to the expected output, i.e. the dynamically downscaled precipitation,320

and their mutual correlation is calculated, which serves as metric to build the321

aforementioned ranking of the variables. In this step, other metrics than cor-322

relation were considered, such as Root Mean Square Error or Mean Averaged323

Bias. The results indicate modest sensitivity to the choice of the metric, so324

correlation was finally the metric used.325

In a second step (see diagram labelled 2 in Fig. 5), the ranking is used as326

the base to calibrate more complex ANNs that include a growing number of327

variables and their interactions, and allow to determine the optimal geometry.328

To do so, we loop in the variables in the order defined by the previous ranking,329

including them in a growing set of predictors. In each step i of this loop,330

another loop is considered in j, the number of neurons in the hidden layer,331

which varies between 1 and i. Therefore, a total of N2+N
2 ANNs, where N is332

the total number of variables in Table 1, are tested for each season. As before,333

the period 1979-1992 is used for calibration and 1993-2005 for validation. From334

all the combinations of number of variables and neurons, the optimal one, in335
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the sense of maximising the correlation, is chosen as ultimate ANN geometry336

to perform the downscaling. Note that the role of calibration and validation337

periods is exchanged to complete the full reference period, allowing the cross338

validation of the results without circularity.339

These tests result in a distinct combination of predictors and number of340

neurons in the hidden layer for each season separately. These configurations, to-341

gether with the correlations obtained during the validation are shown in Table342

2. Note that the number of variables does not grow monotonically, but reaches343

an optimal number for each season. Similarly, the inclusion of more neurons344

in the hidden layer does not necessarily improve the ANN. As expected, the345

precipitation of the ESM emerges as an important variable predicting precip-346

itation in the target region, but in all cases the addition of further large-scale347

predictors improves the performance of the ANN. Indeed, in autumn zonal348

wind at 850 hPa is more skilful predicting local precipitation than the precip-349

itation of the ESM. In agreement with the results in Sec. 3.1, the variables350

most relevant for DJF, MAM and SON are similar, being wind at various levels351

very illuminating predictors of extreme events. This is indicative of the close352

relationship between extreme events in this region and the moisture provided353

by the large-scale circulation. Summer again stands out as a distinct season,354

where the moisture provided by the Mediterranean Sea associated to low pres-355

sure centres in central Europe (note the presence of IWVTXFRANCE and356

SLPCZECH, in the most relevant variables for JJA in Table 2), as well as in-357
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Table 1 Variables directly taken or derived from the ESM used as predictors in the ANN.

Some variables are used systematically for all seasons, whereas others are used for certain

seasons only, based on the results of the composite analysis described in Sec. 3.1. 3D refers to

variables in several vertical levels, i.e. 1000, 850, 700 and 500 hPa. IWV refers to integrated

water vapour. SLPGRAD is calculated as the difference between the SLP averaged in the

regions 46–49 ◦N, 7 – 12 ◦W, and 45–51 ◦N, 28–38 ◦E. IWVFRANCE is defined as IWV

averaged over the region 46–49◦N, 1–7◦W. IWVTXFRANCE is the zonal component of the

integrated water vapour transport averaged over the region 39–45 ◦N, 5–15 ◦E. SLPCZECH

is SLP averaged over the region 45–52◦N, 10–20◦E. Z500FRANCE is the geopotential height

at 500 hPa averaged over the region 45–53 ◦N, -2–8 ◦E.

Season Acronym Levels Description

All PREC surface Precipitation

All SLP surface Sea Level Pressure

All Q 3D Water vapour mixing ration

All RH 3D Relative humidity

All T 3D Temperature

All U 3D Zonal wind

All V 3D Meridional wind

All Z 3D Geopotential height

All KI surface K-Index

All TTI surface Total totals index

All DIV surface, 500 Divergence

All PV 3D Potential vorticity

DJF, MAM, SON SLPGRAD surface SLP gradient

DJF, MAM, SON IWVFRANCE atm. integrated IWV over France

JJA IWVTXFRANCE atm. integrated Zonal component of IWV over France

JJA SLPCZECH surface SLP over the Czech republic

JJA Z500FRANCE 500 Geopotential over the France
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Table 2 Combination of variables and number of neurons in the hidden layer that, once

calibrated in half of the reference period (1979-1992), lead to ANNs that maximise the

correlation in the other half (1993-2005) for different seasons.

Season Predictors hidden neurons correlation

DJF PREC, U700, U850, U500, V500, RH700, SLP-

GRAD, V700

8 0.83

MAM PREC, U850, RH850, U700, U500, RH700,

Z850, HR500, Z700, Z1000, Z500, SLP, KI,

U1000, Q700, T850, VPO700, VPO850, T700,

Q500, SLPGRAD, Q1000, TTI, V700, T500,

RH1000, Q850, VPO500, V1000

2 0.69

JJA PREC, IWVTXFRANCE, SLPCZECH,

RH700, Z500FRANCE, Z1000, Z850, SLP, KI

2 0.69

SON U8500, PREC, V700, SLPGRAD, RH700,

V500, U700, RH500, Z700, U500, RH 850,

Z850, Z500, Z1000

3 0.80

stability measures (KI), emerge as important key variables to predict summer358

precipitation in this region.359

3.3 Results of the event selection in the reference period360

To assess the performance of the event selection based on ANNs, we compare361

it with the skill achieved by the simple approach employed by Felder et al362

(2018). They used only extreme precipitation in the CESM-control simulation363

averaged over the Switzerland (bottom map of Fig. 1) as a criterion to identify364

dates which potentially deliver extreme precipitation over the Aare catchment.365

The selected dates correspond to the four most extreme precipitation events366
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for each season in CESM-control, i.e. 16 cases in total, and were dynamically367

downscaled with WRF. Their results demonstrated that the precipitation ob-368

tained for these cases in winter and summer over the target region was far369

lower than expected, and motivated the new method presented in this study.370

The results by Felder et al (2018) are extended here to the four seasons and371

analysed in more detail. The downscaled precipitation in all the selected cases372

is relatively large, exceeding all but one case the 90th percentile (see Table 3).373

Still, the precipitation obtained for these events is lower than the maximum374

precipitation during the reference period in nearly all cases. Given the length375

of the CESM-control simulation that was used to search for extremes, the se-376

lection of dates aimed at providing physically consistent precipitation events377

with return periods of up to 400 years. However, the method failed in this378

regard. Only 1 event in summer leads to precipitation that can be considered379

as extreme in a 400-year frame, whereas for 10 out of 15 cases the estimated380

return period is below 10 years.381

The skill of event selection based on precipitation within the ESM alone382

can be further assessed using the whole WRF-reference simulation. This way,383

we can compute various skill metrics between the precipitation predicted by384

the ESM over the target region and the one simulated by WRF during the385

complete reference period 1979-2005 (left column of Fig. 6). The precipitation386

within the ESM alone is a poor predictor of precipitation at local scale. Con-387

sidering all days, correlations are around 0.4 in all seasons (note that the Hit388

Rate trivially converges to 1 at low percentiles by its very definition). How-389
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Prec. Perc. Ret. Per.

DJF

13.1 76.4 1.0

35.2 96.2 1.0

85.3 99.9 10.6

— — —

MAM

26.6 97.2 1.1

28.2 97.5 1.2

61.4 99.6 4.9

78.1 99.8 11.3

JJA

12.0 94.2 1.0

29.7 99.8 3.5

43.3 99.9 23.7

86.0 100.0 > 400

SON

13.9 91.6 1.0

21.4 95.9 1.1

41.9 99.2 2.6

86.0 99.9 18.0

Table 3 Results of the downscaling of four single cases per season in the CESM-control sim-

ulation based solely on the precipitation simulated over Switzerland by the ESM. The table

depicts, separately for each season, the precipitation accumulated over the Aare catchment

in each of the four cases once dynamically downscaled with WRF (in winter only three cases

could be run due to numerical instabilities). For each event, three numbers are presented:

the precipitation value in mm, the percentile it represents within the PDF obtained for the

WRF-reference period (1979-2005), and the return period (in years) of such precipitation

estimated using the data in the same period. In the latter case, when the value exceeds 400

years, it is indicated as ”> 400”. The return periods are obtained by fitting the parame-

ters of a Generalised Extreme Value distribution to the data with the aid of the extRemes

package of R (Gilleland and Katz 2016).
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ever, when higher percentiles are considered, the skill rapidly deteriorates in390

all seasons. Above the 90th percentile, the correlation ranges between 0.3 (in391

winter) and 0.1 (in summer), and the Hit Rate is about 0.3 in all seasons.392

For percentiles above the 99th percentile, the Hit Rate rapidly approaches393

zero and becomes insignificantly different from random chance in all seasons.394

SEDI is stable through most of the percentiles, as it is expected for the prop-395

erties that define this index (Ferro and Stephenson 2011). Again it shows that396

the selection of events has certain skill in moderate percentiles, but it rapidly397

deteriorates towards rarer events.398

We focus now on the approach based on ANNs. The optimal geometry399

for each season is fixed as indicated in Table 2 and determined by the tests400

in Sec. 3.2. Next, we apply the approach represented by the diagram 3 in401

Fig. 5. This is, an ANN for each season is calibrated during the first half of402

the WRF-reference period, and used to forecast the daily precipitation in the403

Aare catchment during the second half. These periods are exchanged to en-404

sure that the full period is statistically downscaled using independent data for405

the calibration. The validation, based on the comparison between the WRF406

output and the optimal ANN for each season, is summarised in the results407

of the middle column of Fig. 6. Correlations are systematically higher than408

those for the more simple method in all seasons and percentiles. Considering409

all days, correlation is about 0.8 in spring and autumn, with slightly higher410

and lower values in winter and summer, respectively. As before, the skill de-411

creases towards higher percentiles, but in clear contrast to the performance412
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of the simple approach by Felder et al (2018), in all seasons but summer the413

correlation is nearly constant up to the highest percentiles. The results are414

worse in summer, where the ANN monotonically decreases its performance415

towards higher percentiles. Still, in this season the ANN demonstrates valu-416

able skill up to the 99th percentile, where correlation reaches a critical value417

of 0.3. This is again in contrast to the simple approach (left column of Fig.418

6) showing no skill above the 90th percentile. The Hit Rate also shows the419

seasonal differences. The ANN’s ability to select the right dates is best in win-420

ter, with probabilities of detecting an event that actually happen above 0.6 in421

percentiles above 99th, and worst in summer, when it drops to 0.1. But even422

in that case, and unlike in the simpler approach, the ANN is able to capture423

the 99th percentile events better than pure chance. In both, spring and au-424

tumn, there is a somewhat unexpected improvement in the metrics beyond425

the 90th percentile that is provoked by the ability of the ANN to capture the426

precise ordering of the most extreme cases (not shown), and implies that the427

ANN is able to adequately select between 60% and 80% of the extreme events428

in these seasons. SEDI remains remarkably stable, and even grows towards429

higher percentiles in all seasons but summer. The values are systematically430

higher across all percentiles than those of the simple approach, and the skill431

is comparable to that obtained for the 12h to 24h precipitation forecasts of432

the ECMWF, where the seasonal cycle in the forecasting performance is also433

observed (North et al 2013).434



A Neural Network for the selection of extremes 27

The ability of the ANN to predict the correct extreme events during the435

reference period is further evaluated by comparing the magnitude of the precip-436

itation in observed and predicted extremes. This is presented through boxplots437

in Fig. 7. This figure shows, for each season, the distribution of precipitation438

in the days when it is observed to be above the 99th percentile (black), and439

compares it to the distribution when the days are those predicted by the ANN440

(blue). First, we note that the left tail of the distribution is longer in the pre-441

dicted events (compare black and blue boxplots across seasons). This is the442

expected behaviour, as we already know from the analysis above that about443

50% of the events are incorrectly attributed to extreme events in this per-444

centile. Still, in all seasons but summer the median is well captured, as well as445

the right tail of the distribution, i.e. the absolute most extreme events during446

the period. In agreement with the analysis above, in summer the predictive447

skill is the lowest. Only around 10% of the cases are correctly predicted (see448

Hit Rate in Fig. 6) and these correspond to two marked outliers. In this re-449

gard, it noteworthy that all the absolute maxima for each season during the450

reference period have been captured by the ANNs.451

4 Detection of extremes in climate change projections452

For the ANNs to be successful, and more generally for any statistical downscal-453

ing tool, the climate must be stationary between the period used to calibrate454

and the one where the model is applied. But the actual climate is not com-455

pletely stationary, which can limit the skill of these methods. We have taken456
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the opportunity provided by the WRF-future simulation to evaluate the per-457

formance of statistical downscaling under the unfavourable circumstances of a458

climate severely perturbed with respect to the one used to calibrate the model.459

In detail, the optimal ANN calibrated during the WRF-reference period460

has been used to downscale the CESM-future simulation during the period461

2080-2099. This prediction is compared with the WRF-future simulation fol-462

lowing the same protocol than in the Sec. 3.3. The result of this analysis is463

presented in the right column of Fig. 6. Compared to the reference period, the464

ANN generally presents lower predictive skill. In winter, correlation ranges465

between 0.75 and 0.6, whereas it is above 0.8 in the reference period. The466

Hit Rate is very similar up to the 80th percentile, but above this point the467

probability of predicting extreme events drops faster, reaching 0.4 for the 99th468

percentile (compare this with the value about 0.7 during the reference pe-469

riod). This worsening of the skill is also visible in lower SEDI values in the470

highest percentiles. A similar behaviour is found in spring, albeit with slightly471

lower correlations, closely resembling the results during the reference period.472

The Hit Rate is very similar in both periods until the 90th percentile, where473

the increase of the Hit Rate observed in the reference period is absent in the474

future period, thus also SEDI is reduced. In summer, the ANN presents the475

lowest correlations, but they are remarkably similar to those during the ref-476

erence period, showing that the reduction of skill of the ANN under future477

climate conditions is not very pronounced for summer. Indeed, above 80th478

percentile the Hit Rate is higher under future climate conditions, leading to479
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values comparable to other seasons. In autumn, correlations are strongly re-480

duced compared to the reference period, and are close to those for summer.481

This difference is also found in the Hit Rate above 80th percentile, which leads482

to the lowest Hit Rate of all seasons in the future simulation, and the strongest483

reduction of SEDI. This is in clear contrast to the behaviour of the reference484

period.485

The lower skill in selecting the days with the most severe precipitation486

under future conditions compared to the reference period is related to the487

generally lower correlation and Hit Rate (see middle and right columns in Fig.488

6), in particular during autumn. This reduced performance is attributed to the489

fact that the ANNs are trained to learn the relationships between synoptic and490

local-scale variables during a relatively short period, which are then implicitly491

assumed to be stationary as part of the statistical downscaling exercise. The492

reduction in skill under future climate conditions, however, suggest that at493

least part of this stationary is not perfectly fulfilled, so that climate change494

can indeed affect the mechanisms learned by the ANN and exploited during495

the statistical downscaling, making the calibration sensitive to the period used496

as reference. This has important implications in the way the results of this497

approach in the detection of trends shall be interpreted, as discussed below.498

Fig. 7 represents the distribution of extremes observed (orange) and pre-499

dicted by the ANNs (red) under climate change conditions. As with the ref-500

erence period, the longer left tails are expected as a consequence of the non-501

perfect Hit Rate. Unlike in the reference period, a systematic bias stands out,502
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i.e., a general underestimation of precipitation, illustrated by the fact that the503

median for the ANN-selected cases is below the 25th percentile for the WRF-504

future simulation. Regarding the most extreme events, in winter and spring505

the ANNs are able to predict the most extreme events, whereas in summer506

and autumn the two most extreme events are not identified with the ANNs,507

respectively.508

The signal of climate change on extreme events should be sought in a509

shift in the blue and red boxplots in Fig. 7, respectively. However, instead510

of a systematic shift towards more severe extremes, which could be expected511

according to other studies (e.g. Seneviratne et al 2012; Rajczak et al 2013,512

2016; Messmer et al 2017) as well as basic thermodynamic relationships (e.g.513

O’Gorman 2015), we notice a rather stationary behaviour with modest changes514

attributable to sampling uncertainty. Further, the analysis of the distribution515

of these extremes in consecutive periods shows a lack of trend towards more516

severe or frequent extremes (not shown). Therefore, the ANNs suggest a lack517

of sensitivity of extreme precipitation events to climate change in all seasons.518

This contrasts with the results we can draw by comparing the WRF-519

reference and WRF-future runs (see the horizontal shift in the black vs. orange520

boxplots in Fig. 7). Using the full transient runs, we find more severe extremes521

in winter, summer and to a lesser extent in autumn, with a strong opposite522

behaviour in spring. This behaviour is concurrent with an overall increase in523

precipitation not only in the extremes but also on average in these seasons524

(not shown), which better agrees with the sensitivity of extremes to a warm-525
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ing climate reported for the aforementioned studies. Similar conclusions can526

be drawn from the application of Extreme Value Theory to these data. Fig.527

8 depicts the return level plots for daily precipitation in each season in the528

WRF-reference and WRF-future simulations. In winter and summer, the re-529

turn levels are systematically higher in the WRF-future simulation than in530

WRF-reference. The lower climate change signal described above for autumn531

can be understood under the light of this analysis as a mixed behaviour be-532

tween the events with return levels below and above 5 years. In contrast to533

winter and autumn, the events with longer return periods are ameliorated by534

climate change in autumn according to these simulations, although the uncer-535

tainty in this range is large due to the modest number of events that support536

this conclusion. Finally, as described above respect to Fig. 7, spring stands out537

in the return level plot as an anomalous season, where climate change seems538

to reduce the occurrence of extreme events.539

Based on the discussion above, the apparent lack of sensitivity to climate540

change identified by the ANNs has to be attributed, at least in all seasons541

but autumn, to a limitation of statistical downscaling regarding its ability542

to identify extremes under perturbed climate conditions, rather than to an543

outcome of the CESM-WRF simulations. This can introduce subtle and non-544

systematic biases that largely affect the study of trends, as the comparison of545

the two transient simulations demonstrates.546
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5 Conclusions547

This study proposes and evaluates the feasibility of a dynamical downscal-548

ing strategy to study extreme precipitation events at local scales from low-549

resolution comprehensive ESMs. It is based on the simulation of case studies,550

rather than on running continuous and in many cases unaffordable simulations.551

The main advantage is the reduced computational cost, which in turn can be552

used to increase the spatial resolution, thus becoming an approach especially553

suitable for the simulation of extreme precipitation in regions of very complex554

topography (Ban et al 2014; Gómez-Navarro et al 2018). The central challenge555

of this approach is the selection of the adequate dates to be downscaled, as in-556

ternal variability within this type of freely evolving ESM simulations precludes557

the selection of known historical events.558

We propose a method to select target days to downscale from the ESM559

simulations that blends dynamical and statistical downscaling, and is similar560

in its aim to the method proposed by Meredith et al (2018). First we set up an561

ANN that uses large-scale ESM variables as predictors, and local downscaled562

precipitation as predictand. This model is trained to mimic the ESM-RCM563

coupling over the target region in a computationally affordable period, in this564

case the Aare catchment during 1979-2005. After a careful training and cross-565

validation, we use the obtained ANNs, one for each season, to produce pre-566

cipitation series that span an arbitrary long period within the ESM run, and567

that is used to search for candidate extreme events. Unlike the approach by568
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Meredith et al (2018), our method relies on existing RCM simulations rather569

than observations.570

The results of the ANNs are evaluated by comparing them to the dynam-571

ically downscaled precipitation over the reference period. These results show572

that the ANNs are able to effectively blend information from different vari-573

ables, and result in a powerful predictor of local precipitation. The ability574

of the statistically downscaled series to select the most extreme precipitation575

events at local scales is worse when higher percentiles are considered, although576

this effect becomes noticeable only in the highest percentiles in all seasons but577

summer. In summer, the method provides considerably lower skill in all per-578

centiles, although still significantly better than a pure random selection. This579

is to some extent expected, as extreme precipitation events in this season are580

less strongly driven by the large-scale circulation, but by convective processes581

(e.g., Panziera et al 2018), and therefore the information that can be pro-582

vided by the driving ESM has fewer potential to explain the variability of583

precipitation at such local scale.584

Finally, we use an existing high-resolution climate change projection to585

evaluate the sensitivity of the method to the non-stationarity of actual cli-586

mate. The ANNs trained during the reference period have been tested under587

the RCP 8.5 scenario, searching for events above the 99th percentile using588

the CESM-future simulation as input for the statistical model, and comparing589

the output with WRF-future. The events selected after the application of the590

ANNs are overall extreme, with the majority of events above the expected591
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percentile. Still, the performance of the ANN method is lower than during the592

reference period, which can be attributed to the fact that the model exploits593

relationships between variables learnt for different climate conditions. A num-594

ber of events are erroneously identified as severe, although this is expected and595

agrees with the Hit Rates obtained during the reference period, and demon-596

strates the ability of the ANNs to predict extreme events with remarkable597

performance even in climate conditions very different to the ones used to cali-598

brate the model. The analysis of the response of the severity of these events to599

climate change evidences no trend. This could be erroneously interpreted as a600

lack of sensitivity of extreme precipitation under climate change in the simu-601

lations, which would be in contradiction with other studies (e.g. Seneviratne602

et al 2012; Rajczak et al 2013). Indeed, the comparison of the transient simu-603

lations WRF-reference and WRF-future rules out this possibility, and instead604

hints to a limitation of the ANNs to capture the thermodynamic mechanisms605

responsible for this trend. Thus, these results suggest that statistical meth-606

ods like ANN, which rely on the assumption of stationarity of the statistical607

relationships for reference and change climate states, may be unsuitable for608

correctly identifying trends.609
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6 Appendix: Skill metrics610

6.1 Correlation611

We use Pearson correlation. This metric evaluates the co-variability of two se-612

ries disregarding possible systematic biases, therefore being especially suitable613

for the evaluation of the ANN to predict the right timing of extreme events.614

We repeated the calculation with Spearman correlation and the results are615

similar (not shown).616

As we are especially interested in the performance towards the most ex-617

treme events, correlations are successively calculated after the daily series are618

filtered out to retain only the values of precipitation above a given quantile q619

that corresponds to percentiles p between 1 and 99. In detail, all days in which620

precipitation in the dynamically downscaled series above q are selected, and621

the correlation coefficient between the latter and the series for the ANN within622

this subset of dates is calculated. This process of successive recalculation of the623

statistics filtering out the data towards higher percentiles is repeated for all624

skill metrics described here. Note that as we move towards higher percentiles,625

the length of the series becomes shorter, which leads to larger uncertainty in626

the estimation of the skill metrics. This uncertainty is estimated by jointly627

bootstraping the series with repetition (shadings in Fig. 6 represent the con-628

fidence interval at α = 0.1, while solid lines represent the median). Further,629

the value that rejects the null hypothesis of no skill at α = 0.05 is obtained630
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by independently bootstrapping both series with repetition (dashed curves in631

Fig. 6).632

6.2 Hit Rate F633

In the evaluation of the skill of predicting rare events, it is common to use634

contingency tables (Stephenson 2000; Ferro and Stephenson 2011). Thereby,635

each event can fall in one out of four categories: either it is correctly predicted636

(hit), incorrectly predicted when it did not happen (false alarm), incorrectly637

non predicted with it actually happened (missed event) or it can be correctly638

rejected (most common situation). It is customary to name the number of639

the events within these disjoint sets as a, b, c and d, respectively. Given this640

notation, the Hit Rate is defined as (e.g. Stephenson 2000):641

H =
a

a+ c
= p̂(f |o), (1)

which can be interpreted as the probability of predicting a situation (event642

f , where f stands for ”predicted”) given that it actually happened (event o,643

where o stands for ”observed”). In a similar fashion, we can define the false644

alarm rate F as:645

F =
b

b+ d
= p̂(f |ō), (2)

representing the probability of incorrectly having predicted a situation that646

did not happen.647

A detail to be determined is how to define whether an event happened648

or not in either the observations or the predicted dataset. For instance, if a649
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given threshold of precipitation is fixed for both datasets, it might be that the650

total number of events above such threshold differs between the two datasets,651

leading to a systematic bias, defined as:652

B =
a+ b

a+ c
. (3)

Values of B other than 1 indicate a systematic bias between the observations653

and the predicted dataset. However, this bias is meaningless to us, as we are654

not interested in the given values of precipitation provided directly by the655

ANN, but in their ranking of most extreme values, which will be ultimately656

used to select the events to be downscaled dynamically. Therefore, we carry657

out a form of hedging to the data that consists of working with quantiles. This658

is, for a given a percentile p, we obtain the corresponding quantiles separately659

for the statistical and dynamical downscaling series (as they are in general660

different if the ANN is biased). Then, we define that an event happened in661

one of the series when the precipitation in a given day is above its respective662

quantile. Summing the number of events, leads to the numbers a, b, c and d663

of the contingency table, which ultimately determines H for a given percentile664

p. As describe above, this calculation is repeated for p ranging between 1 and665

99.666

6.3 Symmetric Extremal Dependence Index667

The Symmetric Extremal Dependence Index (SEDI) was proposed by Ferro668

and Stephenson (2011) as an alternative metric to evaluate the skill in predict-669
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ing rare events that supersedes a number of drawbacks of more simple metrics,670

such as H. It is still based on the calculation of a contingency table, and as671

such it is defined as a function of a, b, c and d:672

SEDI =
logF − logH − log(1− F ) + log(1−H)

logF + logH + log(1− F ) + log(1−H)
. (4)

SEDI has the advantage of being base rate independent, non degenerate and673

asymptotically equitable (Ferro and Stephenson 2011). The calculation of674

SEDI for different percentiles p has been performed following the same proce-675

dure as for H.676
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Fig. 5 Steps to find the optimal ANN geometry, which is then used to produce a statistical

downscaling that can be used to validate the skill of the ANN during the WRF-reference

period. 1) all variables considered are tested individually with a trivial ANN to build a

ranking. Each ANN is calibrated during 1979-1992, and assessed by comparing the output of

the ANN with the dynamically downscaled data set for the period 1993-2005. 2), this ranking

is used to iteratively find the optimal network geometry among more realistic ANNs that

allow interactions between variables. For this, all possible combinations are evaluated within

a loop, which goes from 1 to N, where N is the total number of variables candidates to be

included in the input layer. In the step i of this iterative process, another loop is considered

that evaluates ANNs with a variable number of neurons in the hidden layer between 1 and

i. A case with i variables and j ≤ i neurons is represented in the figure. The calibration and

assessment periods are defined as in the former step. 3) once the number of variables and

neurons is identified (labelled n and m, respectively), these parameters are fixed, and the

WRF-reference period is statistically downscaled to validate the skill of the ANN. For this

analysis a more comprehensive validation is carried out by splitting the full period in two

halves and using the complementary part to calibrate and validate, respectively.
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Fig. 6 Agreement between various predictors of simulated precipitation over the Aare catch-

ment and the eventually dynamically downscaled one. Each row represents the result for

a given season. The left column compares the precipitation averaged over Switzerland in

the ESM data with the WRF-reference simulation during the 1979-2005 period (i.e. the

approach by Felder et al 2018). The central column shows the same, but with respect to

the output of the ANNs calibrated for each season separately. The right column compares

the WRF-future simulation with the output of the ANNs driven by the CESM-future in

the period 2080-2099, but calibrated during the reference period (see Sec. 4). Three metrics

are shown: correlation (red), Hit Rate (blue) and SEDI (green). The results are shown as a

function of the percentile p used to filter out the series to keep the days where precipitation

is above the given quantile. The solid lines represent the median, whereas shadows repre-

sent the 5-95 range, as obtained by bootstraping the sample with repetition. Dashed lines

represent the threshold to reject the null hypothesis of skill by random chance at the 95%

confidence level.
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Fig. 7 Distribution of daily precipitation in the Aare catchment. Each boxplot represents

different datasets and periods. Black and blue correspond to the WRF-reference simula-

tion, and highlight daily precipitation above the 99th percentile during the reference period

(1979-2005): black corresponds to observed extremes, whereas blue corresponds to the days

predicted by the ANN. Red and orange represent the same information but for the WRF-

future simulation (2080-2099), discussed in Sec. 4: orange represents the actual extreme

events observed in the WRF-future simulation, whereas red correspond to the individual

cases predicted by the ANNs.
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Fig. 8 Return levels for daily precipitation over the Aare catchment in the WRF-reference

(black) and WRF-future (orange) simulations. The analysis relies on the Peak Over Thresh-

old (POT) approach of Extreme Value Theory. Solid lines depict the Generalised Pareto

Distribution fitted to the values above the 95 percentile (dots) for each simulation. Dashed

lines represent the confidence interval, obtained from the observed information matrix.

This analysis is carried out using the POT package of the R language (https://cran.r-

project.org/web/packages/POT/index.html).


